Vol. 40
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-15
Sturm-Liouville Matrix Equation for the Study of Electromagnetic-Waves Propagation in Layered Anisotropic Media
By
Progress In Electromagnetics Research M, Vol. 40, 79-90, 2014
Abstract
We obtain a Sturm-Lioville matrix equation of motion (SLME) for the study of electromagnetic wave propagation in layered anisotropic structures. Conducting media were taken into account so that ohmic loss is considered. This equation can be treated using a 4×4 associated transfer matrix (T) in layered anisotropic structures, where the tensors: permittivity, permeability and the electric conductivity have a piecewise dependence on the coordinate perpendicular to the layered structure. We use the SLME eigenfunctions and eigenvalues to analyze qualitatively the numerical instability (Ωd problem) which potentially affects practical applications of the transfer matrix method. By means of the SLME coefficients we show analytically that T determinant value can be used to keep a check on the numerical accuracy of calculations. We derive equations to analyze wave propagation in linear layered isotropic structures. The SLME approach is applied on two typical layered structures to verify theoretical predictions and experimental results.
Citation
Rene Pernas-Salomon Rolando Perez-Alvarez , "Sturm-Liouville Matrix Equation for the Study of Electromagnetic-Waves Propagation in Layered Anisotropic Media," Progress In Electromagnetics Research M, Vol. 40, 79-90, 2014.
doi:10.2528/PIERM14110504
http://www.jpier.org/PIERM/pier.php?paper=14110504
References

1. Perez-Alvarez, R. and F. Garcıa-Moliner, Transfer Matrix, Green Function and Related Techniques: Tools for the Study of Multilayer Heterostructures, Universitat Jaume I, Castellon de la Plana, Spain, 2004.

2. Trallero-Giner, C., R. Perez-Alvarez, and F. Garcıa-Moliner, Long Wave Polar Modes in Semiconductor Heterostructures, Elsevier Science, Oxford GB, Pergamon, 1998.

3. Tisseur, F. and K. Meerbergen, "The quadratic eigenvalue problem," SIAM Rev., Vol. 43, No. 2, 235-286, 2001.
doi:10.1137/S0036144500381988

4. Bonnet, G., "Orthotropic elastic media having a closed form expression of the Green tensor," Int. J. Solids Struct., Vol. 46, No. 5, 1240-1250, 2009.
doi:10.1016/j.ijsolstr.2008.10.033

5. Li, X. and M. Wang, "Three-dimensional Green’s functions for infinite anisotropic piezoelectric media," Int. J. Solids Struct., Vol. 44, No. 5, 1680-1684, 2007.
doi:10.1016/j.ijsolstr.2006.06.021

6. Bastard, G. and J. A. Brum, "Electronic states in semiconductor heterostructures," IEEE J. Quantum Elect., Vol. 22, No. 9, 1625-1644, 1986.
doi:10.1109/JQE.1986.1073186

7. Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures, Editions de Physique, Paris, 1989.

8. Oldano, C., "Electromagnetic-wave propagation in anisotropic stratified media," Phys. Rev. A, Vol. 40, No. 10, 6014-6020, 1989.
doi:10.1103/PhysRevA.40.6014

9. Berreman, D. W., "Optics in stratified and anisotropic media: 4 × 4-matrix formulation," J. Opt. Soc. Am., Vol. 62, No. 4, 502-510, 1972.
doi:10.1364/JOSA.62.000502

10. Krijn, M. P. C. M., "Electromagnetic wave propagation in stratified anisotropic media in the presence of sources," Opt. Lett., Vol. 17, No. 3, 163-165, 1992.
doi:10.1364/OL.17.000163

11. Jiaming, H. and Z. Lei, "Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method," Phys. Rev. B, Vol. 77, No. 9, 094201-1-094201-12, 2008.

12. Calas, H., R. Rodriguez-Ramos, J. A. Otero, L. Leija, A. Ramos, and G. Monsivais, "Dispersion curves of shear horizontal wave surface velocities in multilayer piezoelectric systems," J. Appl. Phys., Vol. 107, No. 4, 044511-1-044511-9, 2010.
doi:10.1063/1.3305793

13. Zhang, V. Y. and V. Laude, "Unified and stable scattering matrix formalism for acoustic waves in piezoelectric stacks," J. Appl. Phys., Vol. 104, No. 6, 064916-1-064916-7, 2008.

14. Tan, E. L., "Matrix algorithms for modeling acoustic waves in piezoelectric multilayers," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 54, No. 10, 2016-2023, 2007.
doi:10.1109/TUFFC.2007.496

15. Tan, E. L., "Hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation in multilayered anisotropic media," J. Acoust. Soc. Am., Vol. 119, No. 1, 45-53, 53.
doi:10.1121/1.2139617

16. Lowe, M. J. S., "Matrix techniques for modeling ultrasonic waves in multilayered media," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 42, No. 4, 525-542, 1995.
doi:10.1109/58.393096

17. Higham, N. J., Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
doi:10.1137/1.9780898718027

18. Hurewicz, V., Lectures on Ordinary Differential Equations, The MIT Press, Cambridge, MA, 1958.

19. Bibikov, Y. N., General Course on Ordinary Differential Equations (in Russian), Leningrad University Press, Leningrad, 1981.

20. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, Massachusetts, USA, 2008.

21. Aktsipetrov, O. A., T. V. Dolgova, I. V. Soboleva, and A. A. Fedyanin, "Anisotropic photonic crystals and microcavities based on mesoporous silicon," Phys. Solid State, Vol. 47, No. 1, 156-158, 2005.
doi:10.1134/1.1853468

22. Kovalev, D., G. Polisski, J. Diener, H. Heckler, N. Kunzner, V. Yu. Timoshenko, and F. Koch, "Strong in-plane birefringence of spatially nanostructured silicon," Appl. Phys. Lett., Vol. 78, No. 7, 916-918, 2001.
doi:10.1063/1.1343476

23. De la Mora, M. B., O. A. Jaramillo, R. Nava, J. Taguena-Mart´nez, and J. A. del Rıo, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells, Vol. 93, No. 8, 1218-1224, 2009.
doi:10.1016/j.solmat.2009.01.007

24. Diesinger, H., A. Bsiesy, and R. Herino, "In situ measurement of the optical absorption coefficient of porous silicon," J. Appl. Phys., Vol. 89, No. 1, 221-225, 2001.
doi:10.1063/1.1328785