Vol. 40
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-01-07
Digital Beamforming on Receive in Elevation for Spaceborne Hybrid Phased-MIMO SAR
By
Progress In Electromagnetics Research M, Vol. 40, 153-166, 2014
Abstract
This paper proposes an imaging method of multi-direction swath and digital beamforming (DBF) in elevation for spaceborne Hybrid Phased-MIMO SAR that combines traditional phased-array radar with a new technique for multiple-input multiple-output (MIMO) radar to achieve multifunctional synthetic aperture radar (SAR). At first, we build a signal model and derive a virtual control matrix of the Hybrid Phased-MIMO SAR. Furthermore, considering the image overlap and range ambiguity caused by multiple direction imaging, we present adaptive Digital Beamforming based on Linearly Constrained Minimum Variance (LCMV). In this approach, the first constraint is dedicated to make the overall beamformer response equal the quiescent response in the desired signal region so that the signal is not cancelled when it is present, and additional constraints are included to assure proper reception of the desired signal and form nulls in the direction of interference at the same time. The diagonal loading method is combined with this method to reduce small eigenvalue interference for its eigenvector, which improves the convergence speed in sidelobe. The substantial improvements offered by the proposed adaptive Digital Beamforming technique as compared to previous techniques are demonstrated analytically and by simulations through analysis of the corresponding range compression results and achievable output performance of interference suppression. Simulation results validate the effectiveness of the adaptive DBF.
Citation
Lele Zhang Dianren Chen , "Digital Beamforming on Receive in Elevation for Spaceborne Hybrid Phased-MIMO SAR," Progress In Electromagnetics Research M, Vol. 40, 153-166, 2014.
doi:10.2528/PIERM14111303
http://www.jpier.org/PIERM/pier.php?paper=14111303
References

1. Gebert, N., G. Krieger, and A. Moreira, "Multichannel azimuth processing in scanSAR and TOPS mode operation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 7, 2994-3008, 2010.
doi:10.1109/TGRS.2010.2041356

2. Gao, C., et al., "Large-scene sliding spotlight SAR using multiple channels in azimuth," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 5, 1006-1010, 2013.
doi:10.1109/LGRS.2012.2227929

3. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

4. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110

5. Park, S.-H., J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using efficient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.
doi:10.2528/PIER12040201

6. Henke, D., et al., "Moving-target tracking in single-channel wide-beam SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 11, 4735-4747, 2012.
doi:10.1109/TGRS.2012.2191561

7. Wollstadt, S., et al., "Bidirectional SAR imaging mode," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 601-614, 2013.
doi:10.1109/TGRS.2012.2202669

8. Huber, S., et al., "Digital beam forming techniques for spaceborne reflctor SAR systems," Synthetic Aperture Radar (EUSAR), 1-4, 2010.

9. Huber, S., et al., "Digital beam forming concepts with application to spaceborne reflector SAR systems," International Radar Symposium (IRS), 1-4, 2010.

10. Krieger, G., et al., "Advanced concepts for ultra-wide-swath SAR imaging," Synthetic Aperture Radar (EUSAR), 1-4, 2008.

11. Ender, J. H. G. and A. R. Brenner, "PAMIR --- A wideband phased array SAR/MTI system," IEE Proceedings Radar, Sonar and Navigation, Vol. 150, No. 3, 165-172, 2003.
doi:10.1049/ip-rsn:20030445

12. Ludwig, M., C. H. Buck, F. Coromina, and M. Suess, "Status and trends for space-borne phased array radar (INVITED)," IEEE MTT-S International Microwave Symposium Digest, 2005.

13. Krieger, G., N. Gebert, and A. Moreira, "Multidimensional radar waveforms," Geoscience and Remote Sensing Symposium, 4937-4941, Barcelona, 2007.

14. Krieger, G., N. Gebert, M. Younis, and A. Moreira, "Advanced synthetic aperture radar based on digital beamforming and waveform diversity," Radar Conference, 1-6, Rome, 2008.

15. Krieger, G., N. Gebert, and A. Moreira, "Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 1, 31-46, 2008.
doi:10.1109/TGRS.2007.905974

16. Browning, J. P., D. R. Fuhrmann, and M. Rangaswamy, "A hybrid MIMO phased-array concept for arbitrary spatial beampattern synthesis," IEEE Digital Signal Processing and Signal Processing Education Workshop (DSP/SPE’09), 446-450, Marco Island, FL, 2009.

17. Hassanien, A. and S. A. Vorobyov, "Phased-MIMO radar: A tradeoff between phased-array and MIMO radars," IEEE Transactions on Signal Processing, Vol. 58, No. 6, 1-33, 2010.
doi:10.1049/iet-spr.2008.0114

18. Fuhrmann, D. R., J. P. Browning, and M. Rangaswamy, "Signaling strategies for the hybrid MIMO phased-array radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 66-78, 2010.
doi:10.1109/JSTSP.2009.2038968

19. Hua, G. and S. S. Abeysekera, "Receiver design for range and doppler sidelobe suppression using MIMO and phased-array radar," IEEE Transactions on Signal Processing, Vol. 61, No. 6, 1315-1326, 2013.
doi:10.1109/TSP.2012.2234743

20. Wang, W.-Q. and H. Shao, "A flexible phased-MIMO array antenna with transmit beamforming," International Journal of Antennas and Propagation, 1-10, 2012.

21. Feng, F., S. Li, W. Yu, P. Huang, and W. Xu, "Echo separation in multidimensional waveform encoding SAR remote sensing using an advanced null-steering beamformer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 10, 4157-4171, 2012.
doi:10.1109/TGRS.2012.2187905

22. Krieger, G., et al., "Digital beamforming and MIMO SAR: Review and new concepts," Synthetic Aperture Radar, 11-14, 2012.

23. Kou, G., Z. Wang, and P. Yao, "Multiple beams spaceborne SAR imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 4, 3363-3375, 2012.
doi:10.1109/TAES.2012.6324715

24. Tseng, C.-Y. and L. J. Griffiths, "A simple algorithm to achieve desired patterns for arbitrary arrays," IEEE Transaction on Signal Processing, Vol. 40, No. 11, 2737-2746, 1992.
doi:10.1109/78.165660

25. Tseng, C.-Y. and L. J. Griffiths, "A unified approach to the design of linear constraints in minimum variance adaptive beamformers," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 12, 1533-1542, 1992.
doi:10.1109/8.204744

26. Shi, Z. and Z. Feng, "A new array pattern synthesis algorithm using the two-step least-squares method," IEEE Signal Processing Letters, Vol. 12, No. 3, 250-253, 2005.
doi:10.1109/LSP.2004.842282

27. Wang, F., R. Yang, and C. Frank, "A new algorithm for array pattern synthesis using the recursive least squares method," IEEE Signal Processing Letters, Vol. 10, No. 8, 235-238, 2003.
doi:10.1109/LSP.2003.814398

28. Tseng, C.-Y., "Minimum variance beamforming with phase-independent derivative constraints," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 3, 285-294, 1992.
doi:10.1109/8.135471

29. Carlson, B. D., "Covariance matrix estimation errors and diagonal loading in adaptive arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, No. 4, 397-401, 1988.
doi:10.1109/7.7181