Vol. 41
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-02-14
Equivalent Model from Two Layers Stratified Media to Homogeneous Media for Overhead Lines
By
Progress In Electromagnetics Research M, Vol. 41, 63-72, 2015
Abstract
Overhead power transmission line is influenced by the resistivity of earth return path. The topic is developed in literature by considering a homogeneous and isotropic earth, or verily the soil is more represented by several layers. The scope of this paper is to provide an equivalent homogeneous soil to the two layers stratified soil. The equivalent electromagnetic properties of the soil are calculated using an accurate minimization method. Numerical results presented in this paper, show the efficiency of the proposed model.
Citation
Zeyneb Belganche Abderrahman Maaouni Ahmed Mzerd Amine Bouziane , "Equivalent Model from Two Layers Stratified Media to Homogeneous Media for Overhead Lines," Progress In Electromagnetics Research M, Vol. 41, 63-72, 2015.
doi:10.2528/PIERM14121509
http://www.jpier.org/PIERM/pier.php?paper=14121509
References

1. Carson, J. R., "Wave propagation in overhead wires with ground return," Bell Syst. Tech. J., Vol. 5, 539-554, 1926.
doi:10.1002/j.1538-7305.1926.tb00122.x

2. Sunde, E. D., Earth Conduction Effects in Transmission Systems, D. V. Nostrand Company, Inc., Princeton, NJ, 1948.

3. Iwamoto, K., "Use of travelling waves on the measurement of earth resistivity," J. Inst. Elec. Eng. Japan, Vol. 78, 1038-1049, 1958.

4. Wedepohl, L. M. and R. G. Wasley, "Wave propagation in multi-conductor overhead lines," Proc. IEE, Vol. 113, 627-632, 1966.

5. Nakagawa, N., A. Ametani, and K. Iwamoto, "Further studies on wave propagation in overhead lines with earth return: Impedance of stratified earth," Proc. IEE, Vol. 120, No. 12, 1521-1528, 1973.

6. Papadopoulos, T. A., G. K. Papagiannis, and D. P. Labridis, "A generalized model for the calculation of the impedances and admittances of overhead power lines above stratified earth," Electric Power Systems Research, Vol. 80, 1160-1170, 2010.
doi:10.1016/j.epsr.2010.03.009

7. Ametani, A., "A general formulation of impedance and admittance of cables," IEEE Transactions on Power Apparatus and Systems, Vol. 99, No. 3, 902-910, 1980.
doi:10.1109/TPAS.1980.319718

8. Sommerfeld, A., "Propagation of waves in wireless telegraphy," Ann. Phys. (Leipzig), Vol. 81, 1135-1153, 1926.
doi:10.1002/andp.19263862516

9. Wait, J. R., Electromagnetic Wave Theory, John Wiley & Sons, Inc., 1987.

10. Amri, A. and A. Maaouni, "Evaluation numérique des intégrales de Sommerfeld du type Fourier dans le plan complexe," Ann. Telecommun., Vol. 51, No. 1-2, 4-10, 1996.

11. Bridges, G. E. and L. Shafai, "Plane wave coupling to multiconductor transmission lines above a lossy earth," IEEE Transactions on Electromagnetic Compatibility, Vol. 31, 21-33, 1989.

12. Kelley, C. T., Iterative Methods for Optimization, SIAM Publications, Philadelphia, 1999.
doi:10.1137/1.9781611970920

13. Maaouni, A., A. Amri, and A. Zouhir, "Simple and accurate analytical expressions for evaluating related transmission line integrals," J. Phys. A: Math. Gen., Vol. 34, 9027-9035, 2001.
doi:10.1088/0305-4470/34/42/319

14. Davis, P. J. and P. Rabinowitz, Methods of Numerical Integration, Academic Press Inc., 1984.