Vol. 41
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-01-24
3D Computation of the Power Lines Magnetic Field
By
Progress In Electromagnetics Research M, Vol. 41, 1-9, 2015
Abstract
In this paper, a 3D quasi-static numerical algorithm for computation of the magnetic field produced by power lines is presented. These power lines can be overhead power line phase conductors and shield wires or buried cable line phase conductors. The basis of the presented algorithm is the application of Biot-Savart law and the thin-wire approximation of cylindrical conductors. The catenary form of the power line conductors is approximated by a set of straight cylindrical segments. By summing up contributions of all conductor segments, magnetic field distribution is computed. On the basis of the presented theory, a FORTRAN program PFEMF for computation of the magnetic flux density distribution was developed. For each conductor catenary, it is necessary to define only global coordinates of the beginning and ending points and also the value of the longitudinal phase conductor current. Global coordinates of beginning and ending points of each catenary segment are generated automatically in PFEMF. Numerical results obtained by program PFEMF are compared with results obtained by simple 2D model and results obtained using software package CDEGS.
Citation
Tonci Modric Slavko Vujević Dino Lovrić , "3D Computation of the Power Lines Magnetic Field," Progress In Electromagnetics Research M, Vol. 41, 1-9, 2015.
doi:10.2528/PIERM14122301
http://www.jpier.org/PIERM/pier.php?paper=14122301
References

1. Wertheimer, N. and E. Leeper, "Electrical wiring configurations and childhood cancer," American Journal of Epidemiology, Vol. 109, No. 3, 273-284, 1979.

2. Savitz, D. A. and D. P. Loomis, "Magnetic field exposure in relation to leukemia and brain cancer mortality among electric utility workers," American Journal of Epidemiology, Vol. 141, No. 2, 123-134, 1995.

3. Verkasalo, P. K., "Magnetic fields and leukemia-risk for adults living close to power lines," Scandinavian Journal of Work, Environment & Health, Vol. 22, No. 2, 1-56, 1996.

4. Kroll, M. E., J. Swanson, T. J. Vincent, and G. J. Draper, "Childhood cancer and magnetic fields from high-voltage power lines in England and Wales: A case-control study," British Journal of Cancer, Vol. 103, No. 7, 1122-1127, 2010.
doi:10.1038/sj.bjc.6605795

5. IARC, "Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields," IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 80, 1-395, 2002.

6. International Commission on Non-ionizing Radiation Protection, "Guidelines for limiting exposure to time-varying electric and magnetic fields (1Hz to 100 kHz)," Health Physics, Vol. 99, No. 6, 818-836, 2010.

7. Haznadar, Z. and ZStih, Electromagnetic Fields, Waves and Numerical Methods, IOS Press, Amsterdam, 2000.

8. Fitzpatrick, R., Maxwell’s Equations and the Principles of Electromagnetism, Infinity Science Press LLC, Hingham, 2008.

9. Olsen, R. G. and P. S. Wong, "Characteristics of low frequency electric and magnetic fields in the vicinity of electric power lines," IEEE Transactions on Power Delivery, Vol. 7, No. 4, 2046-2055, 1992.
doi:10.1109/61.157008

10. Moro, F. and R. Turri, "Fast analytical computation of power-line magnetic fields by complex vector method," IEEE Transactions on Power Delivery, Vol. 23, No. 2, 1042-1048, 2008.
doi:10.1109/TPWRD.2007.915212

11. Kaune, W. T. and L. E. Zaffanella, "Analysis of magnetic fields produced far from electric power lines," IEEE Transactions on Power Delivery, Vol. 7, No. 4, 2082-2091, 1992.
doi:10.1109/61.157011

12. Memari, A. R. and W. Janischewskyj, "Mitigation of magnetic field near power lines," IEEE Transactions on Power Delivery, Vol. 11, No. 3, 1577-1586, 1996.
doi:10.1109/61.517519

13. Filippopoulos, G. and D. Tsanakas, "Analytical calculation of the magnetic field produced by electric power lines," IEEE Transactions on Power Delivery, Vol. 20, No. 2, 1474-1482, 2005.
doi:10.1109/TPWRD.2004.839184

14. Garrido, C., A. F. Otero, and J. Cidras, "Low-frequency magnetic fields from electrical appliances and power lines," IEEE Transactions on Power Delivery, Vol. 18, No. 4, 1310-1319, 2003.
doi:10.1109/TPWRD.2003.817744

15. Olsen, R. G., et al., "Magnetic fields from electric power lines theory and comparison to measurements," IEEE Transactions on Power Delivery, Vol. 3, No. 4, 2127-2136, 1988.
doi:10.1109/61.194025

16. Rankovic, V. and J. Radulovic, "Prediction of magnetic field near power lines by normalized radial basis function network," Advances in Engineering Software, Vol. 42, No. 11, 934-938, 2011.
doi:10.1016/j.advengsoft.2011.06.008

17. Vujevic, S., P. Sarajcev, and D. Lovri, "Computation of the power line electric and magnetic fields," Proceedings of the 17th Telecommunications Forum TELFOR, 875-878, Belgrade, Serbia, Nov. 2009.

18. Vujevic, S., D. Lovric, and P. Sarajcev, "Comparison of 2D algorithms for the computation of power line electric and magnetic fields," European Transactions on Electrical Power, Vol. 21, No. 1, 505-521, 2011.
doi:10.1002/etep.457

19. Ismail, H. M., "Characteristics of the magnetic field under hybrid AC/DC high voltage transmission lines," Electric Power Systems Research, Vol. 79, No. 1, 1-7, 2009.
doi:10.1016/j.epsr.2008.04.005

20. Habiballah, I. O., A. S. Farag, M. M. Dawoud, and A. Firoz, "Underground cable magnetic field simulation and management using new design configurations," Electric Power Systems Research, Vol. 45, No. 2, 141-148, 1998.
doi:10.1016/S0378-7796(97)01223-6

21. San Segundo, H. B. and V. F. Roig, "Reduction of low voltage power cables electromagnetic field emission in MV/LV substations," Electric Power Systems Research, Vol. 78, No. 6, 1080-1088, 2008.
doi:10.1016/j.epsr.2007.09.006

22. Almeida, M. E., V. M. Machado, and M. G. Das Neves, "Mitigation of the magnetic field due to underground power cables using an optimized grid," European Transactions on Electrical Power, Vol. 21, No. 1, 180-187, 2011.
doi:10.1002/etep.427

23. Machado, V. M., "Magnetic field mitigation shielding of underground power cables," IEEE Transactions on Magnetics, Vol. 48, No. 2, 707-710, 2012.
doi:10.1109/TMAG.2011.2174775

24. Canova, A., D. Bavastro, F. Freschi, L. Giaccone, and M. Repetto, "Magnetic shielding solutions for the junction zone of high voltage underground power lines," Electric Power Systems Research, Vol. 89, 109-115, 2012.
doi:10.1016/j.epsr.2012.03.003

25. El Dein, A. Z., "Magnetic-field calculation under EHV transmission lines for more realistic cases," IEEE Transactions on Power Delivery, Vol. 24, No. 4, 2214-2222, 2009.
doi:10.1109/TPWRD.2009.2028794

26. Lucca, G., "Magnetic field produced by power lines with complex geometry," European Transactions on Electrical Power, Vol. 21, No. 1, 52-58, 2011.
doi:10.1002/etep.411

27. Salari, J. C., A. Mpalantinos, and J. I. Silva, "Comparative analysis of 2- and 3-D methods for computing electric and magnetic fields generated by overhead transmission lines," IEEE Transactions on Power Delivery, Vol. 24, No. 1, 338-344, 2009.
doi:10.1109/TPWRD.2008.923409

28. Modric, T., S. Vujevic, and T. Majic, "Geometrical approximation of the overhead power line conductors," International Review on Modelling and Simulations, Vol. 7, No. 1, 76-82, 2014.

29. Modric, T., "Advanced numerical computation of electromagnetic field of power lines and substations,", Ph.D. Thesis, University of Split, FESB, 2014 (in Croatian).