Vol. 41
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-01-29
Ultra-Compact Metamaterial Absorber with Low-Permittivity Dielectric Substrate
By
Progress In Electromagnetics Research M, Vol. 41, 25-32, 2015
Abstract
We analyze and discuss an ultra-compact metamaterial absorber (MA) by introducing meander lines into the resonant cells and covering another dielectric layer onto the MA. The size reduction procedures are presented step by step and an ultra-compact metamaterial absorber with in-plane (lateral) dimension of λ/28 and vertical thickness of λ/37 is obtained. We further present two variations of MA con gurations which can reach similar ultra-compact sizes. The proposed ultra-compact MAs show near-unity absorption under a wide range of incident angles for both TE and TM radiations.
Citation
Haibin Sun Yongjun Huang Jian Li Weiren Zhu Guangjun Wen , "Ultra-Compact Metamaterial Absorber with Low-Permittivity Dielectric Substrate," Progress In Electromagnetics Research M, Vol. 41, 25-32, 2015.
doi:10.2528/PIERM14122401
http://www.jpier.org/PIERM/pier.php?paper=14122401
References

1. Holloway, C. L., A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, "A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," Metamaterials, Vol. 3, 100-112, 2009.
doi:10.1016/j.metmat.2009.08.001

2. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Materials, Vol. 11, 426-431, 2012.
doi:10.1038/nmat3292

3. Lin, D., P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science, Vol. 345, 298-302, 2014.
doi:10.1126/science.1253213

4. Zhu, W., I. D. Rukhlenko, Y. Huang, G.Wen, and M. Premaratne, "Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complimentary twisted configuration," Journal of Optics, Vol. 15, 125101, 2013.
doi:10.1088/2040-8978/15/12/125101

5. Kim, T.-T., S. S. Oh, H.-S. Park, R. Zhao, S.-H. Kim, W. Choi, B. Min, and O. Hess, "Optical activity enhanced by strong inter-molecular coupling in planar chiral metamaterials," Scientific Reports, Vol. 4, 5864, 2014.
doi:10.1038/srep05864

6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

7. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B, Vol. 78, 241103(R), 2008.
doi:10.1103/PhysRevB.78.241103

8. Watts, C. M., X. liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012.

9. Yoo, Y. J., H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. M. Kim. H. Cheong, Y. H. Kim, and Y. P. Lee, "Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell," Appl. Phys. Lett., Vol. 105, No. 4, 041902, 2014.
doi:10.1063/1.4885095

10. Liu, X., Q. Zhao, C. Lan, and J. Zhou, "Isotropic Mie resonance-based metamaterial perfect absorber," Appl. Phys. Lett., Vol. 103, No. 3, 031910, 2013.
doi:10.1063/1.4813914

11. El-Aasser, M. A., "Design optimization of nanostrip metamaterial perfect absorbers," Journal of Nanophotonics, Vol. 8, No. 1, 083085, 2014.
doi:10.1117/1.JNP.8.083085

12. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Trans. Antennas and Propagation, Vol. 61, No. 3, 1201-1209, 2013.
doi:10.1109/TAP.2012.2227923

13. He, Y., H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, "Infrared perfect absorber based on nanowire metamaterial cavities," Opt. Lett., Vol. 38, No. 7, 1179-1181, 2013.
doi:10.1364/OL.38.001179

14. Zhong, J., Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, "Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs," Appl. Phys. A, Vol. 108, 329-335, 2012.
doi:10.1007/s00339-012-6989-0

15. Dincer, F., M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403

16. Wang, G.-D., J.-F. Chen, X. Hu, Z.-Q. Chen, and M. Liu, "Polarization-insensitive triple-band microwave metamaterial absorber based on rotated square rings," Progress In Electromagnetics Research, Vol. 145, 175-183, 2014.
doi:10.2528/PIER14010401

17. Bhattacharyya, S. and K. V. Srivastava, "Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator," J. Appl. Phys., Vol. 115, 064508, 2014.
doi:10.1063/1.4865273

18. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 014909, 2011.
doi:10.1063/1.3608246

19. Tian, Y., G. Wen, and Y. Huang, "Multiband negative permittivity metamaterials and absorbers," Advances in Optoelectronics, Vol. 2013, 269170, 2013.

20. Zhu, W., Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, "Configurable metamaterial absorber with pseudo wideband spectrum," Opt. Express, Vol. 20, 6616-6621, 2012.
doi:10.1364/OE.20.006616

21. Huang, Y., G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, "Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber," Opt. Express, Vol. 22, 16408-16417, 2014.
doi:10.1364/OE.22.016408

22. Li, W., U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, "Refractory plasmonics with titanium nitride: Broadband metamaterial absorber," Advanced Materials, Vol. 26, No. 47, 7959-7965, 2014.
doi:10.1002/adma.201401874

23. Li, W., X. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, "Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism," Appl. Phys. A, Vol. 115, No. 1, 229-234, 2014.
doi:10.1007/s00339-013-7996-5

24. Cui, Y., K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.
doi:10.1021/nl204118h

25. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, No. 2, 021102, 2014.
doi:10.1063/1.4890521

26. Wanghuang, T., W. Chen, Y. Huang, and G. Wen, "Analysis of metamaterial absorber in normal and oblique incidence by using interference theory," AIP Adv., Vol. 3, 102118, 2013.
doi:10.1063/1.4826522

27. Pang, Y., H. Cheng, Y. Zhou, and J. Wang, "Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach," J. Appl. Phys., Vol. 113, 114902, 2013.
doi:10.1063/1.4795277

28. Cao, Z. X., F. G. Yuan, and L. H. Li, "A super-compact metamaterial absorber cell in L-band," J. Appl. Phys., Vol. 115, 184904, 2014.
doi:10.1063/1.4875835

29. Lin, B.-Q., X.-Y. Da, S.-H. Zhao, W. Meng, F. Li, Q.-R. Zheng, and B. H. Wang, "Low frequency ultra-thin compact metamaterial absorber comprising split-ping resonators," Chin. Phys. Lett., Vol. 31, 067801, 2014.
doi:10.1088/0256-307X/31/6/067801

30. Huang, Y. J., G. J. Wen, J. Li, J. P. Zhong, P. Wang, Y. H. Sun, O. Gordon, and W. R. Zhu, "Metamaterial absorbers realized in X-band rectangular waveguide," Chin. Phys. B, Vol. 21, 117801, 2012.

31. Padilla, W. J., M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B, Vol. 75, 041102, 2007.
doi:10.1103/PhysRevB.75.041102

32. Kolb, P. W., T. S. Salter, J. A. McGee, H. D. Drew, and W. J. Paddilla, "Extreme subwavelength electric GHz metamaterials," J. Appl. Phys., Vol. 110, 054906, 2011.
doi:10.1063/1.3633213

33. Chen, W.-C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Paddilla, "Extremely subwavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, 201104, 2012.
doi:10.1103/PhysRevB.85.201104

34. Zhu, W. and X. Zhao, "Numerical study of low-loss cross left-handed metamaterials at visible frequency," Chin. Phys. Lett., Vol. 26, 074212, 2009.