Vol. 41
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-03-29
Electromagnetic Waves Under Sea: Bow-Tie Antennas Design for Wi-Fi Underwater Communications
By
Progress In Electromagnetics Research M, Vol. 41, 189-198, 2015
Abstract
In this paper the propagation of electromagnetic waves in a medium with non zero conductivity is discussed, analyzing the dielectric properties of the sea water, in order to accurately characterize a wireless communication channel. Mathematical models for sea water dielectric constant, wavelength, propagation speed and path loss when an electromagnetic wave at 2.4 GHz propagates through sea water are presented. A Bow-Tie microstrip antenna that is required to overcome the high path loss and bandwidth requirements in sea water is studied. A dual-band antenna, with arc-shaped circular slots, operating for IEEE802.11 b/g/n standards, at 2.4 GHz and 5.1 GHz for WLAN communications, with dimensions 1.4 cm2 is implemented. Return loss, input impedance and gain have been extracted in order to characterize antennas' performance in a conductive medium.
Citation
Evangelia A. Karagianni , "Electromagnetic Waves Under Sea: Bow-Tie Antennas Design for Wi-Fi Underwater Communications," Progress In Electromagnetics Research M, Vol. 41, 189-198, 2015.
doi:10.2528/PIERM15012106
http://www.jpier.org/PIERM/pier.php?paper=15012106
References

1. Dargie, W. and C. Poellabauer, Fundamentals of Wireless Sensor Networks: Theory and Practice, John Wiley and Sons, 2010.
doi:10.1002/9780470666388

2. Jiang, S. and S. Georgakopoulos, "Electromagnetic wave propagation into fresh water," Journal of Electromagnetic Analysis and Applications, Vol. 3, 261-266, 2011.
doi:10.4236/jemaa.2011.37042

3. Hunt, K., J. Niemeier, and A. Kruger, "RF communications in underwater wireless sensor networks," IEEE International Conference on Electro/Information Technology (EIT), 2010.

4. Kulhandjian, H., L. C. Kuo, T. Melodia, and D. A. Pados, "Towards experimental evaluation of software-defined underwater networked systems," Proc. of IEEE Underwater Communications Conf. and Workshop (UComms), Sestri Levante, Italy, 2012.

5. Stuntebeck, E., D. Pompili, and T. Melodia, "Wireless under-ground sensor networks using commodity terrestrial motes," 2nd IEEE Workshop on Wireless Mesh Networks, 2006.

6. Nistazakis, H. E., G. S. Tombras, A. D. Tsigopoulos, E. A. Karagianni, and M. E. Fafalios, "Average and outage capacity estimation of optical wireless communication systems over weak turbulence channels," Mosharaka International Conference on Communications, Propagation and Electronics, MIC-CPE, 2009.

7. Liu, L., S. Zhou, and J. Cui, "Prospects and problems of wireless communication for underwater sensor networks," Wireless Communication & Mobile Computing, Vol. 8, No. 8, 977-994, Oct. 2008.

8. Che, X., I. Wells, P. Kear, G. Dickers, X. Gong, and M. Rhodes, "A static multi-hop underwater wireless sensor network using RF electromagnetic communications," 29th IEEE International Conference on Distributed Computing Systems, Canada, 2009.

9. Rhodes, M., "Electromagnetic propagation in seawater and its value in military systems," SEAS DTC Technical Conference, Edinburg, UK, 2007.

10. Singh, K., Y. Kumar, and S. Singh, "A modified bow tie antenna with U-shape slot for wireless applications," International Journal of Emerging Technology and Advanced Engineering, Vol. 2, No. 10, Oct. 2012.

11. Yurduseven, O., D. Smith, N. Pearsall, and I. Forbes, "A solar cell stacked slot-loaded suspended microstrip patch antenna with multiband resonance characteristics for WLAN and WMAX systems," Progress In Electromagnetics Research, Vol. 142, 321-332, 2013.
doi:10.2528/PIER13081502

12. Tze-Meng, O. and T. K. Geok, "A dual-band omni-directional microstrip antenna," Progress In Electromagnetics Research, Vol. 106, 363-376, 2010.
doi:10.2528/PIER10052411

13. Zaker, R., C. Ghobadi, and J. Nourinia, "A modified microstrip-fed two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701

14. Tawk, Y., K. Y. Kabalan, A. EL-Hajj, C. G. Christodoulu, and J. Costantine, "A simple multiband printed bow tie antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 2008.

15. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Ed., John Wiley and Sons, New York, 2007.

16. Sadek, S. and Z. Katbay, "Ultra wideband CPW bow-tie antenna," International Conference on Electromagnetics in Advanced Applications, 2009, ICEAA’09, 261-263, Sep. 14-18, 2009.

17. Marantis, L. and P. Brennan, "A CPW-fed bow-tie slot antenna with tuning stub," Antennas & Propagation Conference, Loughborough, UK, Mar. 17-18, 2008.

18. Meissner, T. and F. J. Wentz, "The complex dielectric constant of pure and sea water from microwave satellite observations," IEEE Transactions on Geoscience and remote Sensing, Vol. 42, No. 9, Sep. 2004.
doi:10.1109/TGRS.2004.831888

19. Hattab, G., M. El-Tarhuni, M. Al-Ali, T. Joudeh, and N. Qaddoumi, "An underwater wireless sensor network with realistic radio frequency path loss model," International Journal of Distributed Sensor Networks, 2013.

20. Ulaby, F., R. Moore, and A. Fung, Microwave Remote Sensing: Radar Remote Sensing and Surface Scattering and Emission Theory, Remote Sensing, Addison-Wesley, USA, 1981.

21. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley & Sons, New York, 2012.