Vol. 41
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-03-08
A Semi-Analytical Method to Calculate the Entries of the Method of Moments Matrix for the Mixed Potential Integral Equation of a Source Reconstruction Problem
By
Progress In Electromagnetics Research M, Vol. 41, 149-158, 2015
Abstract
In this article, the mixed potential integral equation is discretized using the Rao-Wilton-Glisson basis functions in order to obtain a method of moments matrix equation for a source reconstruction problem. The weighting functions used in the setup of the moments equation are Dirac delta functions. The entries of the moments matrix are computed using a semi-analytical method which is applicable to any method of moments problem with point matching. The analytical calculation is made possible by employing a differentiation property of the scalar Green function and the properties of the mesh elements of the source plane. The semi-analytical method makes it easier to increase the accuracy of the moments matrix elements. The accuracy of the method is shown by comparing the results obtained using the semi-analytical method to those obtained by a fully numerical procedure.
Citation
Saffet Sen , "A Semi-Analytical Method to Calculate the Entries of the Method of Moments Matrix for the Mixed Potential Integral Equation of a Source Reconstruction Problem," Progress In Electromagnetics Research M, Vol. 41, 149-158, 2015.
doi:10.2528/PIERM15012602
http://www.jpier.org/PIERM/pier.php?paper=15012602
References

1. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-428, 1982.
doi:10.1109/TAP.1982.1142818

2. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, US Government Printing Office, 1965.

3. Paige, C. C. and M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares," ACM Transactions on Mathematical Software, Vol. 8, No. 1, 43-71, Mar. 1982.
doi:10.1145/355984.355989

4. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM, 1997.

5. Saunders, M. A., "zlsqrmodule.f90,", Jun. 29, 2013, Online Available: http://web.stanford.edu/groupgroup/SOL/software/lsqr/f90/zlsqr.zip/.

6. Dunavant, D. A., "High degree efficient symmetrical gaussian quadrature rules for the triangle," International Journal for Numerical Methods in Engineering, Vol. 21, 1129-1148, 1985.
doi:10.1002/nme.1620210612

7. Petre, P. and T. K. Sarkar, "Planar near-field to far-field transformation using an equivalent magnetic current approach," IEEE Trans. Antennas Propag., Vol. 40, No. 11, 1348-1356, Nov. 1992.
doi:10.1109/8.202712

8. Taaghol, A. and T. K. Sarkar, "Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent magnetic current," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 536-542, Aug. 1996.
doi:10.1109/15.536088

9. Sarkar, T. K. and A. Taaghol, "Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent electric current and MOM," IEEE Trans. Antennas Propag., Vol. 47, No. 3, 566-573, Mar. 1999.
doi:10.1109/8.768793

10. Las-Heras, F., B. Galocha, and J. L. Besada, "Far-field performance of linear antennas determined from near-field data," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 408-410, Mar. 2002.
doi:10.1109/8.999639

11. Las-Heras, F. and T. K. Sarkar, "A direct optimization approach for source reconstruction and NF-FF transformation using amplitude-only data," IEEE Trans. Antennas Propag., Vol. 50, No. 4, 500-510, Apr. 2002.
doi:10.1109/TAP.2002.1003386

12. Las-Heras, F. and T. K. Sarkar, "Radial field retrieval in spherical scanning for current reconstruction and NF-FF transformation," IEEE Trans. Antennas Propag., Vol. 50, No. 6, 866-874, Jun. 2002.
doi:10.1109/TAP.2002.1017669

13. Alvarez, Y., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3460-3468, Dec. 2007.
doi:10.1109/TAP.2007.910316

14. Alvarez, Y., F. Las-Heras, and M. R. Pino, "Probe-distortion correction for the sources reconstruction method," IEEE Antennas and Propagation Mag., Vol. 50, No. 6, 117-124, Dec. 2008.
doi:10.1109/MAP.2008.4768938

15. Arrebola, M., Y. Alvarez, J. A. Encinar, and F. Las-Heras, "Accurate analysis of printed reflectarrays considering the near field of the primary feed," IET Microw. Antennas Propag., Vol. 3, No. 2, 187-194, 2009.
doi:10.1049/iet-map:20070325

16. Eibert, T. F. and C. H. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing Rao-Wilton-Glisson discretization of electric and magnetic surface currents," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1178-1185, Apr. 2009.
doi:10.1109/TAP.2009.2015828

17. Lopez, Y. A., F. Las-Heras, M. R. Pino, and T. K. Sarkar, "An improved super-resolution source reconstruction method," IEEE Trans. Instrum. Meas., Vol. 58, No. 11, 3855-3866, Nov. 2009.
doi:10.1109/TIM.2009.2020847

18. Persson, K., M. Gustafsson, and G. Kristensson, "Reconstruction and visualization of equivalent currents on a radome using an integral representation formulation," Progress In Electromagnetics Research B, Vol. 20, 65-90, 2010.
doi:10.2528/PIERB10012109

19. Lopez, Y. A., A. Dominguez-Casas, C. Garcia-Gonzalez, and F. Las-Heras, "Geometry reconstruction of metallic bodies using the sources reconstruction method," IEEE Trans. Propag. Lett., Vol. 9, 1197-1200, Dec. 2010.

20. Alvarez, Y., M. Rodriguez, F. Las-Heras, and M. M. Hernando, "On the use of the source reconstruction method for estimating radiated EMI in electronic circuits," IEEE Trans. Instrum. Meas., Vol. 59, No. 12, 3174-3183, Dec. 2010.
doi:10.1109/TIM.2009.2036455

21. Lopez-Fernandez, J. A., M. Lopez-Portugues, Y. Alvarez-Lopez, C. Garcia-Gonzalez, D. Martinez, and F. Las Heras Andres, "Fast antenna characterization using the sources reconstruction method on graphics processors," Progress In Electromagnetics Research, Vol. 126, 185-201, 2012.
doi:10.2528/PIER11121408

22. Vazquez, C., C. Garcia, Y. Alvarez, V. Ver-Hoeye, and F. Las-Heras, "Near field characterization of an imaging system based on a frequency scanning antenna array," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2874-2879, May 2013.
doi:10.1109/TAP.2013.2244834

23. Li, P., Y. Li, L. J. Jiang, and J. Hu, "A wide-band equivalent source reconstruction method exploiting the Stoer-Bulirsch algorithm with the adaptive frequency sampling," IEEE Trans. Antennas Propag., Vol. 61, No. 10, 5338-5343, Oct. 2013.
doi:10.1109/TAP.2013.2274032

24. Li, P. and L. J. Jiang, "An iterative source reconstruction method exploiting phaseless electric field data," Progress In Electromagnetics Research, Vol. 134, 419-435, 2013.
doi:10.2528/PIER12102105

25. Lopez-Portugues, M., Y. Alvarez, J. A. Lopez-Fernandez, C. Garcia-Gonzalez, R. G. Ayestaran, and F. Las Heras Andres, "A multi-GPU sources reconstruction method for imaging applications," Progress In Electromagnetics Research, Vol. 136, 703-724, 2013.
doi:10.2528/PIER12122104

26. Quijano, J. L. A. and G. Vecchi, "Improved-accuracy source reconstruction on arbitrary 3-D surfaces," IEEE Trans. Propag. Lett., Vol. 8, 1046-1049, Sep. 2009.

27. Quijano, J. L. A. and G. Vecchi, "Near- and very near-field accuracy in 3-D source reconstruction," IEEE Trans. Propag. Lett., Vol. 9, 634-637, Sep. 2010.

28. Quijano, J. L. A. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309

29. Quijano, J. L. A., L. Scialacqua, J. Zackrisson, L. J. Foged, M. Sabbadini, and G. Vecchi, "Suppression of undesired radiated fields based on equivalent currents reconstruction from measured data," IEEE Trans. Propag. Lett., Vol. 10, 314-317, Apr. 2011.

30. Foged, L. J., L. Scialacqua, F. Saccardi, J. L. A. Quijano, and G. Vecchi, "Application of the dual-equation equivalent-current reconstruction to electrically large structures by fast multipole method enhancement," IEEE Antennas and Propagation Mag., Vol. 56, No. 5, 264-273, Oct. 2014.
doi:10.1109/MAP.2014.6971966