Vol. 42
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-05-04
Inter-Subject Variability Evaluation Towards a Robust Microwave Sensor for Pneumothorax Diagnosis
By
Progress In Electromagnetics Research M, Vol. 42, 61-70, 2015
Abstract
Pneumothorax is the medical condition caused by the air concentration inside the pleural cavity, the space between the lung and the chest wall. Apart from traditional diagnostic methods, it can be detected by using microwave sensors that capture variations in reflected electromagnetic field (EMF). Sex and obesity, related to the internal composition of the biological tissues, can influence the reflected EMF and therefore the sensor diagnostic ability. This paper investigates the effect on the performance of a proposed on-body dual-patch antenna sensor for pneumothorax diagnosis, due to inter-subject variability in underlying tissue structure. The sensor operates at frequency range of 1-4 GHz. The challenge of the paper is to propose frequency bands for robust and safe sensor operation. S12 parameter alternation versus frequency is assessed for healthy and pathological cases. Implemented thorax numerical models include modified (i) closed rectangular multilayered and (ii) MRI-based anatomical ones. In rectangular models, thickness and configuration of muscle, fat and bone tissues are varied, according to literature. Additionally, sex-related anatomical differences are taken into account in MRI-based models. All scenarios are solved using Finite Difference Time Domain method. Results revealed that the proposed frequency bands lie within 1-2.7 and 2.9-3.5 GHz, for muscle, 1.4-3.5 GHz for fat and 1-2.2 and 2.8-3.5 GHz, for bone variations. Numerical evaluations for accurate anatomical models verify the findings.
Citation
Maria Christopoulou Stavros Koulouridis , "Inter-Subject Variability Evaluation Towards a Robust Microwave Sensor for Pneumothorax Diagnosis," Progress In Electromagnetics Research M, Vol. 42, 61-70, 2015.
doi:10.2528/PIERM15022104
http://www.jpier.org/PIERM/pier.php?paper=15022104
References

1. Wakai, A. P., "Spontaneous pneumothorax," Clin Evid, (Online), pii: 1505, 2011.

2. Conceicao, R. C., M. O’Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-20, 2009.
doi:10.2528/PIER09100204

3. Mohammed, B. J., A. M. Abbosh, D. Ireland, and M. E. Bialkowski, "Compact wideband antenna for microwave imaging of brain," Progress In Electromagnetics Research C, Vol. 27, 27-39, 2012.
doi:10.2528/PIERC11102708

4. Christopoulou, M. and S. Koulouridis, "Dual patch antenna sensor for pneumothorax diagnosis: Sensitivity and performance study," Proceedings of IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE EMBC 2014, 4827-4830, Chicago, USA, Aug. 2014.

5. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2231-2293, 1996.
doi:10.1088/0031-9155/41/11/001

6. Frank, M., V. Schorge, K. Hegenscheid, A. Angermaier, A. Ekkernkamp, N. Hosten, R. Puls, and S. Langner, "Sturdivan’s formula revisited: MRI assessment of anterior chest wall thickness for injury risk prediction of blunt ballistic impact trauma," Forensic. Sci. Int., Vol. 212, 110-114, 2011.
doi:10.1016/j.forsciint.2011.05.022

7. British Thoracic Society, Pleural Disease Guidelines, Sep. 2010.

8. Christopoulou, M. and S. Koulouridis, "Design requirements of microwave sensor for pneumothorax diagnosis," Proceedings of IEEE International Symposium on AP/URSI, 2052-2053, Florida, USA, Jul. 2013.

9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd Ed., Artech House, 2000.

10. Reddy, J. N., An Introduction to the Finite Element Method, 3rd Ed., McGraw-Hill, 2005.

11. SEMCAD-X, Schmid & Partner Engineering AG: http://www.speag.com/products/semcad/overview/.

12. Ansys HFSS 15.0: http://www.ansys.com/.

13. Keysight Technologies: http://www.keysight.com/.

14. Christ, A., et al., "The virtual family --- Development of surface-based anatomical models of two adults and two children for dosimetric simulations," Phys. Med. Biol., Vol. 55, No. 2, N23-N38, 2010.
doi:10.1088/0031-9155/55/2/N01

15. Christopoulou, M., M. Capstick, B. Reumer, S. Koulouridis, and N. Kuster, "Experimental thorax prototype for multistage pneumothorax diagnosis," Proceedings of Joint Meeting of The Bioelectromagnetics Society (BEMS) and the European BioElectromagnetics Association (EBEA), BioEM2015, Asilomar Conference Center, California, USA, Jun. 14-19, 2015.

16. Kim, Y. S., M. J. Park, H. Rhim, M. W. Lee, and H. K. Lim, "Sonographic analysis of the intercostal spaces for the application of high-intensity focused ultrasound therapy to the liver," Am. J. Roentgenol., Vol. 203, No. 1, 201-208, 2014.
doi:10.2214/AJR.13.11744

17., Advanced Trauma life Support Program for Doctors, 6th Ed., American College of Surgeons, Chicago, IL, 1997.

18. IEEE Standard C95.1-2005, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, 2005.