Vol. 42
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-04-24
Relativistic Bateman-Hillion Solutions for the Electromagnetic 4-Potential in Hermite-Gaussian Beams
By
Progress In Electromagnetics Research M, Vol. 42, 39-47, 2015
Abstract
The electromagnetic field equations are solved to give the 4-potential in Hermite-Gaussian beams as a function of both the 4-positions of the beam waist and each point in the field. These solutions are the sums of products of position-dependent complex 4-vectors and modified Bateman-Hillion functions. It is assumed that the time difference between the beam waist and each other point is equal to the distance between the points divided by the speed of light. This method is shown to generate solutions that preserve their forms under Lorentz transformations that also correspond to the well known paraxial solutions for the case of nearly parallel beams.
Citation
Robert Ducharme , "Relativistic Bateman-Hillion Solutions for the Electromagnetic 4-Potential in Hermite-Gaussian Beams," Progress In Electromagnetics Research M, Vol. 42, 39-47, 2015.
doi:10.2528/PIERM15030104
http://www.jpier.org/PIERM/pier.php?paper=15030104
References

1. Bateman, H., "The transformation of the electrodynamical equations," London Math. Soc., Vol. 8, 223-264, 1910.
doi:10.1112/plms/s2-8.1.223

2. Hillion, P., "The Courant-Hilbert solution of the wave equation," J. Math. Phys., Vol. 33, 2749-2753, 1992.
doi:10.1063/1.529595

3. Kiselev, A. P., A. B. Plachenov, and P. Chamorro-Posada, "Nonparaxial wave beams and packets with general astigmatism," Phys. Rev. A, Vol. 85, 043835-1-043835-11, 2012.
doi:10.1103/PhysRevA.85.043835

4. Siegman, A. E., Lasers, University Science Books, Mill Valley, California, 1986.

5. Svelto, O., Principles of Lasers, Springer, New York, 2010.
doi:10.1007/978-1-4419-1302-9

6. Brabec, T. and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys., Vol. 18, No. 2, 545-591, 2000.
doi:10.1103/RevModPhys.72.545

7. Kiselev, A. P., "Localized light waves: Paraxial and exact solutions of the wave equation (a review)," Optics and Spectroscopy, Vol. 102, No. 4, 603-622, 2007.
doi:10.1134/S0030400X07040200

8. Overfelt, P. L., "Bessel-Gauss pulses," Phys. Rev. A, Vol. 44, No. 6, 3941-3947, 1991.
doi:10.1103/PhysRevA.44.3941

9. Moses, H. E. and R. T. Prosser, "Acoustic and electromagnetic bullets: Derivation of new exact solutions of the acoustic and Maxwell’s equations," SIAM J. Math. Phys., Vol. 50, No. 5, 1325-1340, 1990.
doi:10.1137/0150079

10. Konar, S., M. Mishra, and S. Jana, "Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media," Physics Letts. A, Vol. 362, 505-510, 2007.
doi:10.1016/j.physleta.2006.11.025

11. Konar, S. and S. Jana, "Linear and nonlinear propagation of sinh-Gaussian pulses in dispersive media possessing Kerr nonlinearity," Optics Communication, Vol. 236, No. 1, 7-20, 2004.
doi:10.1016/j.optcom.2004.03.012

12. Komar, A., "Interacting relativistic particles," Phys. Rev. D, Vol. 18, 1887-1893, 1978.
doi:10.1103/PhysRevD.18.1887

13. Crater, H. W. and P. Van Alstine, "Two-body dirac equations for particles interacting through world scalar and vector potentials," Phys. Rev. D, Vol. 36, No. 10, 3007-3036, 1987.
doi:10.1103/PhysRevD.36.3007

14. Saleem, M. and M. Rafique, Special Relativity Applications to Particle Physics and the Classical Theory of Fields, Ellis Horwood, New York, 1992.

15. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.