Vol. 42
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-06-29
The Response of Layered Materials to EMG Waves from a Pulse Source
By
Progress In Electromagnetics Research M, Vol. 42, 179-187, 2015
Abstract
The authors present an analysis of conditions on the boundary between layers having varied electromagnetic properties. The research is performed using consistent theoretical derivation of analytical formulas, and the underlying problem is considered also in view of multiple boundaries including the effect of the propagation of electromagnetic waves with different instantaneous speeds. The paper comprises a theoretical analysis and references to the generated algorithms. The algorithms were assembled to enable simple evaluation of all components of the electromagnetic field in relation to the wave propagation speed in a heterogeneous environment. The proposed algorithms are compared by means of different numerical methods for the modelling of electromagnetic waves on the boundary between materials; moreover, the electromagnetic field components in common points of the model were also subject to comparison. When in conjunction with tools facilitating the analysis of material response to the source of a continuous signal, the algorithms constitute a supplementary instrument for the design of a layered material. Such design allows us to realize, for example, a recoilless plane, recoilless transition between different types of environment, and filters for both optical and radio frequencies.
Citation
Radim Kadlec Pavel Fiala , "The Response of Layered Materials to EMG Waves from a Pulse Source," Progress In Electromagnetics Research M, Vol. 42, 179-187, 2015.
doi:10.2528/PIERM15042904
http://www.jpier.org/PIERM/pier.php?paper=15042904
References

1. Dĕdek, L. and J. Dĕdková, Elektromagnetismus. 2, 232, VUTIUM, Brno, 2000, ISBN: 80-214-1548-7.

2. Meng, F.-Y., et al., "Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3013-3022, 2012, ISSN: 0018-9480.
doi:10.1109/TMTT.2012.2209455

3. Dong, J. and J. Li, "The reflection and transmission of electromagnetic waves by a uniaxial chiral slab," Progress In Electromagnetics Research, Vol. 127, 389-404, 2012.
doi:10.2528/PIER12031703

4. Wood, A. W., "Analysis and numerical solution of electromagnetic scattering from cavities," IEEE 2012 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1253-1255, 2012, ISBN: 978-1-4673-0333-0.
doi:10.1109/ICEAA.2012.6328819

5. Kříž, T., "Design of lightning systems with usage sensitivity analysis for improvement of numerical model," PIERS Proceedings, 623-626, Marrakesh, Morocco, Mar. 20-23, 2011.

6. Schmidt, E., J. Humlíček, F. Lukeš, and J. Musilová, Optické Vlastnosti Pevných Látek, 200, Státní pedagogické nakladatelství, Praha, 1986.

7. King, R. W. and M. F. Brown, "Lateral electromagnetic waves along plane boundaries: A summarizing approach," Proceedings of the IEEE, Vol. 72, No. 5, 595-611, 1984, ISSN: 0018-9219.
doi:10.1109/PROC.1984.12898

8. Kadlec, R., "Analysis of an electromagnetic wave on the boundary between heterogeneous materials,", 84, Doc. Ing. Eva Kroutilová, Ph.D., Supervisor, Faculty of Electrical Engineering and Communication, Brno University of technology, Brno, 2014.

9. Novitsky, A. V., S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, "Field approach in the transformation optics concept," Progress In Electromagnetics Research, Vol. 129, 485-515, 2012.
doi:10.2528/PIER12050902

10. Myška, R. and P. Drexler, "The development of methods for estimation of time differences of arrival of pulse signals," PIERS Proceedings, 709-713, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.

11. Drexler, P. and R. Kubásek, "Pulsed magnetic field fiber optic sensor based on orthoconjugate retroreflector," Proceedings of SCS 2009 International Conference on Signals, Circuits and Systems, 52-57, Tunisia, 2009, ISBN: 978-1-4244-4398-7.

12. Naryan, S., et al., "EM performance analysis of multilayered metamaterial frequency selective surfaces," 2011 IEEE Applied Electromagnetics Conference (AEMC), 1-4, 2011, ISBN: 978-145771098-8.