Vol. 42
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-07-06
A New Analytical Description and FEA Validation of an Effective Method to Reduce the Cogging Torque in SM-AFPM Motors
By
Progress In Electromagnetics Research M, Vol. 42, 189-197, 2015
Abstract
So far, several methods to reduce the cogging torque of permanent magnet motors have been introduced. Implementation and evaluation of these methods have usually been done on radial flux types of motors. Nowadays, as axial flux permanent magnet motors have more advantages over radial ones, they are more attractive. Therefore, in this paper analytical modeling and calculation of the most effective method impact in reducing the cogging torque in axial flux permanent magnet motors will be studied. In fact, in this method the radial edges of the magnets will be curved to have a significant impact on reducing this unwanted component. This paper introduces a new concept to model this method. Finally, the accuracy of the proposed method will be verified by finite element analysis.
Citation
Mohammadreza Pahlavani Hamid Reza Gholinejad Omran , "A New Analytical Description and FEA Validation of an Effective Method to Reduce the Cogging Torque in SM-AFPM Motors," Progress In Electromagnetics Research M, Vol. 42, 189-197, 2015.
doi:10.2528/PIERM15051504
http://www.jpier.org/PIERM/pier.php?paper=15051504
References

1. Woolmer, T. J. and M. D. McCulloch, "Axial flux permanent magnet machines: A new topology for high performance applications," Hybrid Vehicle Conference, IET The Institution of Engineering and Technology, 27-42, 2006.

2. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402

3. Gulec, M. and M. Aydin, "Influence of magnet grouping in reduction of cogging torque for a slotted double-rotor axial-flux PM motor," International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 812-817, 2012.
doi:10.1109/SPEEDAM.2012.6264415

4. Gieras, J. F. and M. Wing, Permanent Magnet Motor Technology: Design and Applications, 3rd Ed., CRC Press, 2010.

5. Aydin, M., Z. Q. Zhu, T. A. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Transactions on Magnetics, Vol. 43, No. 9, 3614-3622, Sep. 2007.
doi:10.1109/TMAG.2007.902818

6. Bianchini, C., F. Immovilli, A. Bellini, and M. Davoli, "Review of design solutions for internal permanent-magnet machines cogging torque reduction," IEEE Transactions on Magnetics, Vol. 48, No. 10, 2685-2693, 2012.
doi:10.1109/TMAG.2012.2199509

7. Kudrjavtsev, O. and A. Kilk, "Cogging torque reduction methods," IEEE Electric Power Quality and Supply Reliability Conference, 251-254, 2014, ISBN 978-1-4799-5020-1.

8. Aydin, M., "Magnet skew in cogging torque minimization of axial gap permanent magnet motors," Proceedings of the International Conference on Electrical Machines, 1-6, 2008.

9. Chabchoub, M., I. Ben Salah, G. Krebs, R. Neji, and C. Marchand, "PMSM cogging torque reduction: Comparison between different shapes of magnet," First International Conference on Renewable Energies and Vehicular Tecnology, 206-211, 2012.

10. Parviainen, A., "Design of axial-flux permanent-magnet low-speed machines and performance comparison between radial-flux and axial-flux machines,", Doctoral Thesis, Lappeenranta, Finland, Apr. 19, 2005.

11. Parviainen, A., M. Niemelä, and J. Pyrhönen, "Modeling of axial flux permanent-magnet machines," IEEE Transactions on Industry Applications, Vol. 40, No. 5, 1333-1340, 2004.
doi:10.1109/TIA.2004.834086

12. Fei, W. and P. C. K. Luk, "Cogging torque reduction techniques for axial-flux surface-mounted permanent-magnet segmented-armature-torus machines," IEEE International Symposium on Industrial Electronics, 485-490, 2008.