Vol. 45

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-12-16

Microwave Focusing Within Arbitrary Refractive Index Media Using Left-Handed Metamaterial Lenses

By Luca Leggio, Ehsan Dadrasnia, and Omar de Varona
Progress In Electromagnetics Research M, Vol. 45, 51-58, 2016
doi:10.2528/PIERM15072807

Abstract

Left-handed metamaterial (LHM) lenses allow the focusing of microwave radiation at specific positions within a medium, depending on its refractive index. A suitable approach needs to consider the reflections between the LHM lens and the adjacent media. This work faces the challenge of focusing the microwave radiation within a medium with arbitrary positive refractive index and characteristic impedance using LHM lenses as imaging-forming systems. To find a right lens formula, a full wave method is presented in theory. The results we achieved show that the characteristic flat shape of conformal-four lens configuration has a spot size of 0.53 x 0.34λeff2 at -3 dB if the different media are perfectly matched. Otherwise, a noteworthy aberration affects the focusing, but it can be mitigated using a conformal circular LHM lens with a spot size of ~0.4 x 0.4λeff2 at -3 dB.

Citation


Luca Leggio, Ehsan Dadrasnia, and Omar de Varona, "Microwave Focusing Within Arbitrary Refractive Index Media Using Left-Handed Metamaterial Lenses," Progress In Electromagnetics Research M, Vol. 45, 51-58, 2016.
doi:10.2528/PIERM15072807
http://www.jpier.org/PIERM/pier.php?paper=15072807

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-14, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    3. Garcia, N. and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Physical Review Letters, Vol. 90, No. 22, 229903, 2003.
    doi:10.1103/PhysRevLett.90.229903

    4. Zhang, K.-K., H.-L. Luo, and S.-C. Wen, "Focal shift of paraxial gaussian beams in a left-handed material slab lens," Chinese Physics Letters, Vol. 27, No. 7, 4774-4784, 2010.

    5. Kuhta, N. A., V. A. Podolskiy, and A. L. Efros, "Far field imaging by a planar lens: diffraction versus superresolution," Physical Review B, Vol. 76, 205102, 2007.
    doi:10.1103/PhysRevB.76.205102

    6. Kuhta, N. A., V. A. Podolskiy, and A. L. Efros, "Quantifying the limitations of far-field imaging by a left-handed planar lens," URSI General Assembly, Chicago, 2008.

    7. Aydin, K. and E. Ozbay, "Left-handed metamaterial based superlensfor subwavelength imaging of electromagnetic waves," Applied Physics A, Vol. 87, No. 2, 137-141, 2007.
    doi:10.1007/s00339-006-3817-4

    8. Petrov, R. V., G. Srinivasan, M. I. Bichurin, and D. Viehland, "Three-dimensional left-handed material lens," Applied Physics Letters, Vol. 91, 104103, 2007.
    doi:10.1063/1.2778753

    9. Ozbay, E. and K. Aydin, "Negative refraction and subwavelength focusing using left-handed composite metamaterials," Proceedings SPIE, Metamaterials III, Lensing I, Vol. 6987, April 23, 2008.

    10. Wang, G., Y. Gong, and H. J. Wang, "Schemes of microwave hyperthermia by using flat left-handed material lenses," Microwave and Optical Technology Let., Vol. 51, No. 7, 1738-1743, 2009.
    doi:10.1002/mop.24449

    11. Leggio, L., O. de Varona, and E. Dadrasnia, "A comparison between different schemes of microwave cancer hyperthermia treatment by means of left-handed metamaterial lenses," Progress In Electromagnetics Research, Vol. 150, 73-87, 2015.
    doi:10.2528/PIER14101408

    12. Tassin, P., I. Veretennicoff, and G. Van der Sande, "Veselago’s lens consisting of left-handed materials with arbitrary index of refraction," Optics Communications, Vol. 264, 130-134, 2006.
    doi:10.1016/j.optcom.2006.02.013

    13. Born, M. and E. Wolf, Principles of Optics, Seventh Ed., Cambridge University Press, 2002.

    14. Zhou, J., T. Koschny, and C. M. Soukoulis, "An efficient way to reduce losses of left-handed metamaterials," Optics Express, Vol. 16, No. 15, 11147-11152, 2008.
    doi:10.1364/OE.16.011147

    15. Zhu, L., F. Meng, F. Zhang, J. Fu, Q. Wu, X. Ding, and J. L.-W. Li, "An ultra-low loss split ring resonator by suppressing the electric dipole moment," Progress In Electromagnetics Research, Vol. 137, 239-254, 2013.
    doi:10.2528/PIER12121703

    16. Fang, J., G. Yu, H.Wang, and W. Gang, "Study on near field target detection and imaging by using flat LHM lens," META08–Proceed. of the 2008 Intern. Workshop on Metamaterials, November 9-12, 2008.

    17. Wang, G., J. Fang, and X. Dong, "Resolution of near-field microwave target detection and imaging by using flat LHM lens," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3534-3541, 2007.
    doi:10.1109/TAP.2007.910365

    18. Turpin, J. P., Q. Wu, D. H. Werner, B. Martin, M. Bray, and E. Lier, "Low cost and broadband dual-polarization metamaterial lens for directivity enhancement," IEEE Transactions on Antennas and Propagation, Vol. 60, 5717-5726, Dec. 2012.
    doi:10.1109/TAP.2012.2214013

    19. Meng, F. Y., Y. L. Lyu, K. Zhang, Q. Wu, and L. W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.
    doi:10.2528/PIER12082112

    20. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nature Materials, Vol. 7, 435-441, 2008.
    doi:10.1038/nmat2141

    21. Lan, L., W. Jiang, and Y. Ma, "Three dimensional subwavelength focus by a near-field plate lens," Applied Physics Letters, Vol. 102, No. 23, 231119, 2013.
    doi:10.1063/1.4810004

    22. Grbic, A., L. Jiang, and R. Merlin, "Near-field plates: Sub-diffraction focusing with patterned surfaces," Science, Vol. 320, No. 5875, 511-513, 2008.
    doi:10.1126/science.1154753