Vol. 44

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-10-23

Permanent Magnet System and Electron Gun Design for a 3rd Harmonic Peniotron

By Xinhui Wu, Jianli Huo, Biao Hu, Jiayin Li, Jufen Li, and Puchun Chen
Progress In Electromagnetics Research M, Vol. 44, 101-108, 2015
doi:10.2528/PIERM15082101

Abstract

This study discusses the operating characteristics of a large-orbit electron gun and a corresponding permanent magnet system of a 3rd harmonic peniotron. After optimization, a novel axis-encircling electron beam with axial velocity spread 4.48%, guiding centre deviation ratio 6.97% and high velocity ratio 2.03 is obtained. Driven by the electron gun, an output power of 35.4 kW is obtained, and the device efficiency is up to 56.0%, which is an attractive result in laboratories. The main advantages of such a peniotron are its compact size and low cost, which can meet the needs of vehicle, airborne and other mobile devices. The numerical analysis reveals that the relative axial position between the electrode system and magnet system has a great influence on the device performance, which needs careful control and precise adjustment.

Citation


Xinhui Wu, Jianli Huo, Biao Hu, Jiayin Li, Jufen Li, and Puchun Chen, "Permanent Magnet System and Electron Gun Design for a 3rd Harmonic Peniotron," Progress In Electromagnetics Research M, Vol. 44, 101-108, 2015.
doi:10.2528/PIERM15082101
http://www.jpier.org/PIERM/pier.php?paper=15082101

References


    1. Singh, G. and B. N. N. Basu, "Modal analysis of azimuthally periodic vane-loaded cylindrical waveguide interaction structure for gyro-TWT," Progress In Electromagnetics Research, Vol. 70, 175-189, 2007.
    doi:10.2528/PIER07010601

    2. Kumar, N., U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha, "Design of 35GHz Gyrotron for material processing applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011.
    doi:10.2528/PIERB10110206

    3. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
    doi:10.2528/PIER10071305

    4. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
    doi:10.2528/PIER10071505

    5. Idehara, T., I. Ogawa, S. Mitsudo, Y. Iwata, S. Watanabe, Y. Itakura, K. Ohashi, H. Kobayashi, T. Yokoyama, V. Zapevalov, M. Glyavin, A. Kuftin, O. Malygin, and S. Sabchevski, "Development of a high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet," Vacuum, Vol. 77, No. 4, 539-546, 2005.
    doi:10.1016/j.vacuum.2004.09.022

    6. Glyavin, M., S. Sabchevski, and T. Idehara, "Numerical analysis of weakly relativistic large orbit gyrotron with permanent magnet system," Int. J. Infr. Mill. Waves, Vol. 21, No. 8, 1211-1221, 2000.
    doi:10.1023/A:1026443932009

    7. Zapevalov, V., T. Idehara, and S. Sabchevski, "Design of a large orbit gyrotron with a permanent magnet system," Int. J. Infr. Mill. Waves, Vol. 24, No. 3, 253-260, 2003.
    doi:10.1023/A:1021855115770

    8. Vitello, P., "Design considerations for the gyro-peniotron oscillator," Int. J. Infr. Mill. Waves, Vol. 8, No. 5, 487-515, 1987.
    doi:10.1007/BF01013261

    9. Zhao, X. Y., J. Y. Li, and X. H. Wu, "Theoretical design and simulation of 8mm-band third-harmonic slotted peniotron," Chin. J. Vacuum Sci. Tec., Vol. 31, 194-200, 2011.

    10. Wu, X. H., J. Y. Li, and B. Hu, "Numerical study of an 8mm third-harmonic peniotron with a gradual reversal of the magnetic field," Phys. Plas., Vol. 19, 023101-1-8, 2012.

    11. Song, H. and T. Mulcahy, "A large orbit electron gun design for a terahertz harmonic gyrotron," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1437-1447, 2011.

    12. Zurk, L. M. and P. E. Serafim, "Relativistic electron motion in a resonant cavity with time varying and inhomogeneous magnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 1, 129-143, 1994.
    doi:10.1163/156939394X00849

    13. Gallagher, D., M. Barsanti, F. Scafuri, and C. Armstrong, "High-power cusp gun for harmonic gyro-device applications," IEEE Trans. Plas. Sci., Vol. 28, 695-699, 2000.

    14. Hu, B., J. Y. Li, X. H. Wu, T. M. Li, and Y. H. Zhou, "Design of a large-orbit electron gun with gradual reversal magnetic field for a W-band permanent magnet peniotron," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 9, 1136-1144, 2013.
    doi:10.1080/09205071.2013.801043

    15. Wu, X. H., J. Y. Li, B. Hu, and T. M. Li, "Generation of large-orbit electron beam using magnetron type injection gun," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 2070-2079, 2012.
    doi:10.1080/09205071.2012.724774

    16. Serrona, L., R. Fujisaki, A. Sugimura, T. Okuda, N. Adachi, H. Ohsato, I. Sakamoto, A. Nakanishi, M. Motokawa, D. Ping, and K. Hono, "Enhanced magnetic properties of Nd-Fe-B thin films crystallized by heat treatment," J. Magnetism Magnetic Materi., Vol. 260, 406-414, 2003.
    doi:10.1016/S0304-8853(02)01380-X

    17. Herrmannsfeldt, W. B., "Egun-an electron optics and gun design program,", Stanford Linear Accelerator Center, Stanford University, Stanford, California, 1979.

    18. Kalyanasundaram, N. and P. Somaskandan, "Large-signal field analysis of an m-type travelling wave amplifier," Journal of Electromagnetic Waves and Applications, Vol. 7, 1355-1378, 1993.
    doi:10.1163/156939393X00525