Vol. 44

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-10-07

A Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber

By Deepak Sood and Chandra Charu Tripathi
Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015
doi:10.2528/PIERM15082903

Abstract

A novel design of wideband, ultra-thin, wide-angle metamaterial microwave absorber has been presented. The unit cell of the proposed structure is designed by using parametric optimization in such a way that absorption frequencies come closer and give wideband response. For normal incidence, the simulated FWHM bandwidth of the proposed structure is 1.94 GHz, i.e. from 5.05 GHz to 6.99 GHz and -10 dB absorption bandwidth is 1.3 GHz from 5.27 GHz to 6.57 GHz. The proposed structure has been analyzed for different angles of polarization, and it gives high absorption (more than 50%) for oblique angles of incidence up to 60˚. The designed absorber is in low profile with a unit cell size of λ0/6 and ultrathin with a thickness of λ0/32 at the center frequency of 5.92 GHz corresponding to 10 dB absorption bandwidth. The current and electromagnetic field distributions have been analyzed to understand the absorption mechanism of the absorber. An array of the proposed absorber has been fabricated and experimentally tested for various polarization angles and oblique incidences of electromagnetic wave. The proposed absorber is well suited for surveillance and other defense applications.

Citation


Deepak Sood and Chandra Charu Tripathi, "A Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber," Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015.
doi:10.2528/PIERM15082903
http://www.jpier.org/PIERM/pier.php?paper=15082903

References


    1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamat absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    2. Chambers, B., "Optimum design of a salisbury screen radar absorber," Electron. Lett., Vol. 30, 1353-1354, 1994.
    doi:10.1049/el:19940896

    3. Salisbury, W. W., "Absorbent body of electromagnetic waves,", United States Patent 2,599,944, June 10, 1952.

    4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    6. Enoch, S., G. Tayeb, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 3901-3904, 2002.
    doi:10.1103/PhysRevLett.89.213902

    7. Fallahi, A., A. Yahaghi, H. R. Benedickter, H. Abiri, M. Sarabandi, and C. Hafner, "Thin wideband radar absorbers," IEEE Trans. Antennas Propag., Vol. 58, 4051-4058, 2010.
    doi:10.1109/TAP.2010.2078482

    8. Puscasu, I. and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett., Vol. 92, 233102, 2008.
    doi:10.1063/1.2938716

    9. Liu, X., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective Infrared spatial and frequency selective," Phys. Rev. Lett., Vol. 104, 207403, 2010.
    doi:10.1103/PhysRevLett.104.207403

    10. Rosenberg, J., R. V. Shenoi, S. Krishna, and O. Painter, "Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors," Appl. Phys. Lett., Vol. 95, 161101, 2009.
    doi:10.1063/1.3244204

    11. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," App. Phys. Lett., Vol. 96, 251104, 2010.
    doi:10.1063/1.3442904

    12. Li, M. H., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
    doi:10.2528/PIER10071409

    13. Lee, H.-M. and H. Lee, "A dual band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.
    doi:10.2528/PIERL12050110

    14. Ghosh, S., D. Sarkar, S. Bhattacharyya, and K. V. Srivastava, "Design of an ultra-thin dual band microwave metamaterial absorber," 6th Annual Conf., ATMS, 38-41, Kolkata, India, 2013.

    15. Bhattacharyya, S. and K. V. Srivastava, "Triple band polarization independent ultra-thin metamatetial absorber using electric field driven LC resonator," Journal App. Phys., Vol. 115, 064508, 2014.
    doi:10.1063/1.4865273

    16. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Opt. Exp., Vol. 21, 9691-9702, 2013.
    doi:10.1364/OE.21.009691

    17. Ghosh, S., S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, "Bandwidth enhanced polarization insensitive microwave metamaterial absorber and its equivalent circuit model," Journal App. Phys., Vol. 115, 104503, 2014.
    doi:10.1063/1.4868577

    18. Lee, J. and S. Lim, "Bandwidth-enhanced polarization insensitive microwave metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
    doi:10.1049/el.2010.2770

    19. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Triple band polarization independent ultra-thin metamaterial absorber with bandwidth enhancement at X-band," Journal App. Phys., Vol. 115, 094514, 2013.
    doi:10.1063/1.4820569

    20. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Bandwidth-enhanced metamaterial absorber using electric filed driven LC resonator for airborne radar applications," Microw. Opt. Techno. Lett., Vol. 55, 2131-2137, 2013.
    doi:10.1002/mop.27786

    21. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber," Microw. Opt. Techno. Lett., Vol. 56, 350-355, 2014.
    doi:10.1002/mop.28122

    22. Bhattacharyya, S., S. Ghosh, D. Chaurasiya, and K. V. Srivastava, "Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber," Appl. Phys. A, Vol. 118, 207-215, 2014.
    doi:10.1007/s00339-014-8908-z

    23. Jaradat, H. and A. Akyurtlu, "Infrared (IR) absorber based on multiresonant structures," IEEE Trans. Antennas Propag. Lett., Vol. 11, 1222-1225, 2012.
    doi:10.1109/LAWP.2012.2223652

    24. Ghosh, S., S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, "An ultrwideband ultrathin metamaterial absorber based on circular split rings," IEEE Trans. Antennas Propag. Lett., Vol. 14, 1172-1175, 2015.
    doi:10.1109/LAWP.2015.2396302

    25. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas Wireless Propag. Lett., Vol. 14, 511-514, 2015.
    doi:10.1109/LAWP.2014.2369732

    26. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
    doi:10.1103/PhysRevB.75.235114