Vol. 45

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-12-18

Mathematical Analysis and Modeling of Single-Walled Carbon Nanotube Composite Material for Antenna Applications

By Yaseen Naser Jurn, Mohd Fareq Bin Abd Malek, and Hasliza A. Rahim
Progress In Electromagnetics Research M, Vol. 45, 59-71, 2016
doi:10.2528/PIERM15091702

Abstract

In this paper, the mathematical analysis of a single-walled carbon nanotube composite material (SWCNT-composite) is presented in order to estimate its effective conductivity model and other important parameters. This composite material consists of SWCNT coated by other different materials. The effects of the radius of SWCNT and average thickness of coating layer on this effective conductivity model are investigated. The effects of using different types of coating materials with different radii of SWCNTs on the behavior of this composite material are also presented. An investigation of electromagnetic properties of SWCNT-composite material was carried out based on designing and implementing the dipole antenna configuration using a common electromagnetic engineering tool solver CST (MWS). The results obtained from comparisons between SWCNT and SWCNT-composite materials are presented based on their electromagnetic properties are also described in this paper.

Citation


Yaseen Naser Jurn, Mohd Fareq Bin Abd Malek, and Hasliza A. Rahim, "Mathematical Analysis and Modeling of Single-Walled Carbon Nanotube Composite Material for Antenna Applications," Progress In Electromagnetics Research M, Vol. 45, 59-71, 2016.
doi:10.2528/PIERM15091702
http://www.jpier.org/PIERM/pier.php?paper=15091702

References


    1. Wood, J. R. and H. D. Wagner, "Single-wall carbon nanotubes as molecular pressure sensors," Appl. Phys. Lett., Vol. 67, 2883-2885, 2000.
    doi:10.1063/1.126505

    2. Li, C. Y. and T. W. Chou, "Strain and pressure sensing using single-walled carbon nanotubes," Nanotechnology, Vol. 15, 1493-1496, 2004.
    doi:10.1088/0957-4484/15/11/021

    3. Li, J., Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan, "Carbon nanotube sensors for gas and organic vapor detection," Nano Lett., Vol. 3, 929-933, 2003.
    doi:10.1021/nl034220x

    4. Besteman, K., J.-O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, "Enzyme-coated carbon nanotubes as single-molecule biosensors," Nano Lett., 727-730, 2003.
    doi:10.1021/nl034139u

    5. Hoenlein, W., F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. V. Seidel, and E. Unger, "Carbon nanotube applications in microelectronics," IEEE Trans. on Components and Packaging Tech., Vol. 27, 629-634, 2004.
    doi:10.1109/TCAPT.2004.838876

    6. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas," IEEE Transactions on Antenna and Propagation, Vol. 53, 3426-3435, 2005.
    doi:10.1109/TAP.2005.858865

    7. Hanson, G. W. and J. A. Berres, "Multiwall carbon nanotubes at RF-THz frequencies: Scattering, shielding, effective conductivity and power dissipation," IEEE Transactions on Antenna and Propagation, Vol. 59, 3098-3103, 2011.
    doi:10.1109/TAP.2011.2158951

    8. Burke, P. J., "Lüttinger theory as a model of the gigahertz electrical properties of carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 1, 129-144, 2002.
    doi:10.1109/TNANO.2002.806823

    9. Burke, P. J., "Correction to L¨uttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 3, 331, 2004.

    10. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 2, 55-58, 2003.
    doi:10.1109/TNANO.2003.808503

    11. Burke, P. J., "Correction to an RF circuit model for carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 3, 331, 2004.

    12. Burke, P., S. Li, and Z. Yu, "Quantitative theory of nanowire and nanotube antenna performance," IEEE Transaction on Nanotechnology, Vol. 5, 314-334, 2006.
    doi:10.1109/TNANO.2006.877430

    13. Hanson, G. W. and J. Hao, "Infrared and optical properties of carbon nanotube dipole antennas," IEEE Transaction on Nanotechnology, Vol. 5, 766-775, 2006.
    doi:10.1109/TNANO.2006.883475

    14. Hanson, G. W., "Current on an infinitely-long carbon nanotube antenna excited by a gap generator," IEEE Transaction on Antennas and Propagation, Vol. 54, 76-81, 2006.
    doi:10.1109/TAP.2005.861550

    15. Arash, B., Q. Wang, and V. K. Varadan, "Mechanical properties of carbon nanotube/polymer composites," Scientific Reports, Vol. 4, Article Number 6479, 1-8, 2014.

    16. Chu, K. and S.-H. Park, "Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance," IEEE Electron Device Letters, Vol. 36, 50-52, 2015.
    doi:10.1109/LED.2014.2374698

    17. Fan, J., Z. Chen, N. Tang, H. Li, and Y. Yin, "Supercapacitors based on composite material of MnO2 and carbon nanotubes," Proceedings of the 13th IEEE International Conference on Nanotechnology Beijing, 933-963, China, 2013.

    18. Aryasomayajula, L., R. Rieske, and K.-J. Wolter, "Application of copper-carbon nanotubes composite in packaging interconnects," 34th Int. Spring Seminar on Electronics Technology, 531-536, 2011.

    19. Bakrudeen, S. B., "Dramatic improvement in mechanical properties and sem image analysis of AI-CNT composite," Proceedings of the International Conference on Advanced Nanomaterial & Emerging Engineering Technologies (ICANMEET-20J3), 184-189, 2013.
    doi:10.1109/ICANMEET.2013.6609272

    20. Han, W.-Q. and A. Zettl, "Coating single-walled carbon nanotubes with tin oxide," Nano Lett., Vol. 3, 681-683, 2003.
    doi:10.1021/nl034142d

    21. Li, H., C.-S. Ha, and II Kim, "Fabrication of carbon nanotube/SiO2 and carbon nanotube/SiO2/Ag nanoparticles hybrids by using plasma treatment," Nanoscale Res. Lett., Vol. 4, 1384-1388, 2009.
    doi:10.1007/s11671-009-9409-4

    22. Su, Y., H. Wei, Z. Yang, and Y. Zhang, "Highly compressible carbon nanowires synthesized by coating single-walled carbon nanotubes," Carbon, Vol. 49, 3579-3584, 2001.
    doi:10.1016/j.carbon.2011.04.060

    23. Qunqinq, L., S. Fan, W. Han, C. H. Sun, and W. Liang, "Coating of carbon nanotube with nickel by electroless plating method," Jpn. J. Appl. Phys., Vol. 36, L501-L503, 1997.
    doi:10.1143/JJAP.36.L501

    24. Zhu, L., G. Lu, S. Mao, and J. Chen, "Ripening of silver nanoparticles on carbon nanotubes," Nano: Brief Rep. and Rev., Vol. 2, 149-156, 2007.

    25. Morihisa, Y., C. Kimura, M. Yukawa, H. Aoki, T. Kobayashi, S. Hayashi, S. Akita, Y. Nakayama, and T. Sugino, "Improved field emission characteristic of individual carbon nanotube coated with boron nitride nanofilm," J. Vac. Sci. Technol. B, Vol. 26, 872-875, 2008.
    doi:10.1116/1.2822990

    26. Peng, Y. and Q. Chen, "Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite," Nanoscale Res. Lett., Vol. 7, 1-5, 2012.
    doi:10.1186/1556-276X-7-1

    27. Peng, Y. and Q. Chen, "Fabrication of copper/MWCNT hybrid nanowires using electroless copper deposition activated with silver nitrate," J. Electrochen Soc., Vol. 159, D72-D76, 2012.
    doi:10.1149/2.047202jes

    28. Hanson, G. W., "A common electromagnetic framework for carbon nanotubes and solid nanowires-spatially distributed impedance, and transmission line model," IEEE Transaction on Microwave Theory and Techniques, Vol. 59, 9-20, 2011.
    doi:10.1109/TMTT.2010.2090693

    29. Orfanidis, S. J., "Electromagnetic waves and antennas," Maxwell’s Equations, Chapter 1, 2010.

    30. Hanson, G. W., "Radiation efficiency of nanoradius dipole antennas in the microwave and far-infrared regime," IEEE Antenna and Propagation Magazine, Vol. 50, 1-10, 2008.
    doi:10.1109/MAP.2008.4563565

    31. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., John Wiley and Sons, USA, 2005.