Vol. 47
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-16
Temperature Performance of GaInNAs -Based Photonic Crystal Waveguide Modulators
By
Progress In Electromagnetics Research M, Vol. 47, 201-213, 2016
Abstract
The temperature performances of GaInNAs-based semiconductor devices, for next generation communication networks and photonic integrated circuits, are investigated. In particular, GaInNAs-GaInAs Multi Quantum Well active ridge waveguides, patterned with a periodic one-dimensional grating and an active defective region placed in the central layer, have been designed for efficient active optical switches and modulators. The switching mechanism was obtained around the Bragg wavelength λ≌1.2896 μm at room temperature T=298 K by properly designing the periodic grating and changing the injected current density from JOFF=0 mA/μm2 to JON=0.496 mA/μm2. The proposed device exhibits high performances in terms of crosstalk, contrast ratio, and modulation depth. The temperature performance of the proposed device is analyzed in the range T=298 K - 400 K, showing a good stability of the figures of merit: crosstalk CT, contrast ratio CR, and bandwidth Δλ. In particular, the CT varies at about 1.2 dB in the whole temperature range, whereas CR and Δλ experience, respectively, a maximum variation of 25% and 30% of their maximum values.
Citation
Giovanna Calo, Dimitris Alexandropoulos, and Vincenzo Petruzzelli, "Temperature Performance of GaInNAs -Based Photonic Crystal Waveguide Modulators," Progress In Electromagnetics Research M, Vol. 47, 201-213, 2016.
doi:10.2528/PIERM15092403
References

1. Biberman, A. and K. Bergman, "Optical interconnection networks for high-performance computing systems," Rep. Prog. Phys., Vol. 75, 046402, 2012.
doi:10.1088/0034-4885/75/4/046402

2. Li, Z., A. Qouneh, M. Joshi, W. Zhang, X. Fu, and T. Li, "Aurora: A cross-layer solution for thermally resilient photonic network-on-chip," Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 23, No. 1, 170-183, 2015.
doi:10.1109/TVLSI.2014.2300477

3. Van Campenhout, J., W. M. J. Green, and Y. A. Vlasov, "Design of a digital, ultra-broadband electro-optic switch for recon gurable networks-on-chip," Opt. Express, Vol. 12, 23793-23801, 2009.
doi:10.1364/OE.17.023793

4. Calò, G., A. D'Orazio, and V. Petruzzelli, "Broadband Mach-Zehnder switch for photonic networks on chip," J. Lightwave Technol., Vol. 30, No. 7, 944-952, 2012.
doi:10.1109/JLT.2012.2184739

5. Calò, G. and V. Petruzzelli, "WDM performances of two- and three-waveguide Mach-Zehnder switches assembled into 4×4 matrix router," Progress In Electromagnetics Research Letters, Vol. 38, 1-16, 2013.
doi:10.2528/PIERL12113007

6. Padmaraju, K. and K. Bergman, "Resolving the thermal challenges for silicon microring resonator devices," Nanophotonics, Vol. 3, 269-281, 2014.

7. Kondow, M., T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okar, and K. Uomi, "GaInNAs: A novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron, 719-730, 1997.
doi:10.1109/2944.640627

8. Konttinen, J., P. Tuomisto, M. Guina, and M. Pessa, "Recent progress in development of GaInNAs-based photonic devices," Proc. IEEE ICTON 2006, 189-192, 2006.

9. Dumitrescu, M., A. Larsson, Y. Wei, E. Larkins, P. Uusimaa, K. Schulz, and M. Pessal, "High-performance 1.3 μm dilute-nitride edge-emitting lasers," International Semiconductor Conference, 2007. CAS 2007, Sinaia, Romania, Oct. 15-17, 2007.

10. Dagens, B., A. Martinez, D. Make, O. Le Gouezigou, J. Provost, V. Sallet, K. Merghem, J. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10-Gb/s transmission with directly modulated GaInNAs-GaAs 1.35-μm laser for metropolitan applications," IEEE Photonics Technol. Lett., Vol. 17, No. 5, 971-973, 2005.
doi:10.1109/LPT.2005.845718

11. Gustavsson, J. S., Y. Q. Wei, M. Sadeghi, S. M. Wang, and A. Larsson, "10 Gbit/s modulation of 1.3 μm GaInNAs lasers up to 110°C," Electron. Lett., Vol. 42, No. 16, 925-926, 2006.
doi:10.1049/el:20061517

12. Wei, Y. Q., J. S. Gustavsson, M. Sadeghi, S. M. Wang, A. Larsson, P. Savolainen, P. Melanen, and P. Sipilä, "Uncooled 2.5 Gb/s operation of 1.3 μm GaInNAs DQW lasers over a wide temperature range," Opt. Express, Vol. 14, 2753-2759, 2006.
doi:10.1364/OE.14.002753

13. Kima, C. K. and Y. H. Lee, "Thermal characteristics of optical gain for GaInNAs quantum wells at 1.3 μm," Appl. Phys. Lett., Vol. 79, No. 19, 3038-3040, 2001.
doi:10.1063/1.1418022

14. Alexandropoulos, D., M. J. Adams, Z. Hatzopoulos, and D. Syvridis, "Proposed scheme for polarization insensitive GaInNAs-based semiconductor optical amplifiers," IEEE J. Quantum Electron., Vol. 41, 817-822, 2005.
doi:10.1109/JQE.2005.847551

15. Calò, G., D. Alexandropoulos, A. D'Orazio, and V. Petruzzelli, "Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides," Phys. Status Solidi B-Basic Solid State Phys., Vol. 248, No. 5, 212-215, 2011.
doi:10.1002/pssb.201000782

16. Schires, K., R. Al Seyab, A. Hurtado, V.-M. Korpijarvi, M. Guina, I. D. Henning, and M. J. Adams, "Optically-pumped dilute nitride spin-VCSEL," Opt. Express, Vol. 20, No. 4, 3550-3555, 2012.
doi:10.1364/OE.20.003550

17. Bonnefont, B., M. Messant, O. Boutillier, F. Gauthier-Lafaye, A. Lozes-Dupuy, M. V. Sallet, K. Merghem, L. Ferlazzo, J. C. Harmand, A. Ramdane, J. G. Provost, B. Dagens, J. Landreau, O. Le Gouezigou, and X. Marie, "Optimization and characterization of InGaAsN/GaAs quantum-well ridge laser diodes for high frequency operation," Opt. Quantum Electron., Vol. 38, No. 4-6, 313-324, 2006.
doi:10.1007/s11082-006-0032-7

18. Korpijarvi, V.-M., T. Leinonen, J. Puustinen, Harkonen, and M. D. Guina, "11 W single gain-chip dilute nitride disk laser emitting around 1180 nm," Opt. Express, Vol. 18, No. 25, 25633-25641, 2010.
doi:10.1364/OE.18.025633

19. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton Univ. Press, Princeton, NJ, 2008.

20. Calò, G., A. Farinola, and V. Petruzzelli, "Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution," J. Opt. Soc. Amer. B, Vol. 28, No. 7, 1668-1679, Jul. 2011.
doi:10.1364/JOSAB.28.001668

21. Calò, G. and V. Petruzzelli, "Compact design of photonic crystal ring resonator 2×2 routers as building blocks for photonic networks on chip," J. Opt. Soc. Am. B, Vol. 31, No. 3, 517-525, 2014.
doi:10.1364/JOSAB.31.000517

22. Calò, G. and V. Petruzzelli, "Wavelength routers for optical networks on chip using optimized photonic crystal ring resonators," IEEE Photonics J., Vol. 5, No. 3, 7901011, 2013.
doi:10.1109/JPHOT.2013.2264278

23. Calò, G., A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Tunability of photonic band gap notch filters," IEEE Trans. Nanotechnol., Vol. 7, 273-284, 2008.
doi:10.1109/TNANO.2008.917848

24. Cowan, A. R. and J. F. Young, "Mode Matching for second-harmonic generation in photonic crystal waveguides," Phys. Rev. B, Vol. 65, 085106, 2002.
doi:10.1103/PhysRevB.65.085106

25. Bendickson, J. M., J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in nite, one-dimensional, photonic band-gap structures," Phys. Rev. E, Vol. 53, 4107-4121, 1996.
doi:10.1103/PhysRevE.53.4107

26. Calò, G., V. Petruzzelli, L. Mescia, and F. Prudenzano, "Study of gain in photonic band gap active InP waveguides," J. Opt. Soc. Amer. B, Vol. 26, No. 12, 2414-2422, Dec. 2009.
doi:10.1364/JOSAB.26.002414

27. Calò, G., M. Grande, D. Alexandropoulos, and V. Petruzzelli, "Photonic band gap active waveguide filters based on diluite nitrides," Phys. Status Solidi C, Vol. 10, No. 4, 567-572, 2013.
doi:10.1002/pssc.201200375

28. Calò, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.
doi:10.2528/PIERL12072401

29. Calò, G., D. Alexandropoulos, and V. Petruzzelli, "Active photonic band-gap switch based on GalnNAs multiquantum well," IEEE Photonics J., Vol. 4, No. 5, 1936-1946, 2012.
doi:10.1109/JPHOT.2012.2220128

30. Chang, C. and S. L. Chuang, "Modelling of strained quantum-well lasers with spin-orbit coupling," IEEE. J. Select. Top. Quantum. Electron., Vol. 1, 218-229, 1995.
doi:10.1109/2944.401200

31. Chao, C. Y. and S. L. Chuang, "Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells," Phys. Rev. B, Vol. 46, 4110-4122, 1992.
doi:10.1103/PhysRevB.46.4110

32. Chuang, S. L., "Efficient band-structure calculations of strained quantum wells using a two by two Hamiltonian," Phys. Rev. B, Vol. 43, 9649-9661, 1991.
doi:10.1103/PhysRevB.43.9649

33. Chuang, S. L., Physics of Optolectronic Devices, Wiley Interscience, New York, 1995.

34. Kima, C. K. and Y. H. Lee, "Thermal characteristics of optical gain for GaInNAs quantum wells at 1.3 μm," Appl. Phys. Lett., Vol. 79, No. 19, 3038-3040, 2001.
doi:10.1063/1.1418022

35. Pregla, R., "MOL-BPM method of lines based beam propagation method," Progress In Electromagnetics Research, Vol. 11, 51-102, 1995.

36. Gerdes, J., "Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines," Electron. Lett., Vol. 30, 550-551, 1994.
doi:10.1049/el:19940387

37. D'Orazio, A., M. De Sario, V. Petruzzelli, and F. Prudenzano, "Bidirectional beam propagation method based on the method of lines for the analysis of photonic band gap structures," Opt. Quantum Electron., Vol. 35, 629-640, 2003.
doi:10.1023/A:1023955615239

38. Calò, G., A. D'Orazio, M. Grande, V. Marrocco, and V. Petruzzelli, "Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching," IEEE J. Quantum Electron., Vol. 47, 172-181, 2011.
doi:10.1109/JQE.2010.2053838

39. Buus, J., "The effective index method and its application to semiconductor laser," IEEE J. Quant. Elect., Vol. 18, 1083-1089, 1982.
doi:10.1109/JQE.1982.1071659

40. Makino, T., "Effective index matrix analysis of distributed feedback semiconductor lasers," IEEE J. Quant. Elect., Vol. 28, 434-440, 1982.

41. Working Group I, COST 216 "Comparison of different modeling techniques for longitudinally invariant integrated optical waveguides," IEEE Proceedings, Vol. 136, No. 5, 273-280, Oct. 1989.

42. Batrak, D. V. and S. A. Plisyuk, "Applicability of the effective index method for simulating ridge optical waveguides," Quantum Electron., Vol. 36, 349-352, 2006.
doi:10.1070/QE2006v036n04ABEH013149

43. Alexandropoulos, D., M. J. Adams, Z. Hatzopoulos, and D. Syvridis, "Proposed scheme for polarization insensitive GaInNAs-based semiconductor optical amplifiers," IEEE J. Quantum Electron., Vol. 41, 817-822, 2005.
doi:10.1109/JQE.2005.847551

44. Vurgaftman, I., J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," J. Appl. Phys., Vol. 89, 5815-5875, 2001.
doi:10.1063/1.1368156