Vol. 47

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-04-16

Temperature Performance of GaInNAs -Based Photonic Crystal Waveguide Modulators

By Giovanna Calo, Dimitris Alexandropoulos, and Vincenzo Petruzzelli
Progress In Electromagnetics Research M, Vol. 47, 201-213, 2016
doi:10.2528/PIERM15092403

Abstract

The temperature performances of GaInNAs-based semiconductor devices, for next generation communication networks and photonic integrated circuits, are investigated. In particular, GaInNAs-GaInAs Multi Quantum Well active ridge waveguides, patterned with a periodic one-dimensional grating and an active defective region placed in the central layer, have been designed for efficient active optical switches and modulators. The switching mechanism was obtained around the Bragg wavelength λ≌1.2896 μm at room temperature T=298 K by properly designing the periodic grating and changing the injected current density from JOFF=0 mA/μm2 to JON=0.496 mA/μm2. The proposed device exhibits high performances in terms of crosstalk, contrast ratio, and modulation depth. The temperature performance of the proposed device is analyzed in the range T=298 K - 400 K, showing a good stability of the figures of merit: crosstalk CT, contrast ratio CR, and bandwidth Δλ. In particular, the CT varies at about 1.2 dB in the whole temperature range, whereas CR and Δλ experience, respectively, a maximum variation of 25% and 30% of their maximum values.

Citation


Giovanna Calo, Dimitris Alexandropoulos, and Vincenzo Petruzzelli, "Temperature Performance of GaInNAs -Based Photonic Crystal Waveguide Modulators," Progress In Electromagnetics Research M, Vol. 47, 201-213, 2016.
doi:10.2528/PIERM15092403
http://www.jpier.org/PIERM/pier.php?paper=15092403

References


    1. Biberman, A. and K. Bergman, "Optical interconnection networks for high-performance computing systems," Rep. Prog. Phys., Vol. 75, 046402, 2012.
    doi:10.1088/0034-4885/75/4/046402

    2. Li, Z., A. Qouneh, M. Joshi, W. Zhang, X. Fu, and T. Li, "Aurora: A cross-layer solution for thermally resilient photonic network-on-chip," Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 23, No. 1, 170-183, 2015.
    doi:10.1109/TVLSI.2014.2300477

    3. Van Campenhout, J., W. M. J. Green, and Y. A. Vlasov, "Design of a digital, ultra-broadband electro-optic switch for recon gurable networks-on-chip," Opt. Express, Vol. 12, 23793-23801, 2009.
    doi:10.1364/OE.17.023793

    4. Calò, G., A. D'Orazio, and V. Petruzzelli, "Broadband Mach-Zehnder switch for photonic networks on chip," J. Lightwave Technol., Vol. 30, No. 7, 944-952, 2012.
    doi:10.1109/JLT.2012.2184739

    5. Calò, G. and V. Petruzzelli, "WDM performances of two- and three-waveguide Mach-Zehnder switches assembled into 4×4 matrix router," Progress In Electromagnetics Research Letters, Vol. 38, 1-16, 2013.
    doi:10.2528/PIERL12113007

    6. Padmaraju, K. and K. Bergman, "Resolving the thermal challenges for silicon microring resonator devices," Nanophotonics, Vol. 3, 269-281, 2014.

    7. Kondow, M., T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okar, and K. Uomi, "GaInNAs: A novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron, 719-730, 1997.
    doi:10.1109/2944.640627

    8. Konttinen, J., P. Tuomisto, M. Guina, and M. Pessa, "Recent progress in development of GaInNAs-based photonic devices," Proc. IEEE ICTON 2006, 189-192, 2006.

    9. Dumitrescu, M., A. Larsson, Y. Wei, E. Larkins, P. Uusimaa, K. Schulz, and M. Pessal, "High-performance 1.3 μm dilute-nitride edge-emitting lasers," International Semiconductor Conference, 2007. CAS 2007, Sinaia, Romania, Oct. 15-17, 2007.

    10. Dagens, B., A. Martinez, D. Make, O. Le Gouezigou, J. Provost, V. Sallet, K. Merghem, J. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10-Gb/s transmission with directly modulated GaInNAs-GaAs 1.35-μm laser for metropolitan applications," IEEE Photonics Technol. Lett., Vol. 17, No. 5, 971-973, 2005.
    doi:10.1109/LPT.2005.845718

    11. Gustavsson, J. S., Y. Q. Wei, M. Sadeghi, S. M. Wang, and A. Larsson, "10 Gbit/s modulation of 1.3 μm GaInNAs lasers up to 110°C," Electron. Lett., Vol. 42, No. 16, 925-926, 2006.
    doi:10.1049/el:20061517

    12. Wei, Y. Q., J. S. Gustavsson, M. Sadeghi, S. M. Wang, A. Larsson, P. Savolainen, P. Melanen, and P. Sipilä, "Uncooled 2.5 Gb/s operation of 1.3 μm GaInNAs DQW lasers over a wide temperature range," Opt. Express, Vol. 14, 2753-2759, 2006.
    doi:10.1364/OE.14.002753

    13. Kima, C. K. and Y. H. Lee, "Thermal characteristics of optical gain for GaInNAs quantum wells at 1.3 μm," Appl. Phys. Lett., Vol. 79, No. 19, 3038-3040, 2001.
    doi:10.1063/1.1418022

    14. Alexandropoulos, D., M. J. Adams, Z. Hatzopoulos, and D. Syvridis, "Proposed scheme for polarization insensitive GaInNAs-based semiconductor optical amplifiers," IEEE J. Quantum Electron., Vol. 41, 817-822, 2005.
    doi:10.1109/JQE.2005.847551

    15. Calò, G., D. Alexandropoulos, A. D'Orazio, and V. Petruzzelli, "Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides," Phys. Status Solidi B-Basic Solid State Phys., Vol. 248, No. 5, 212-215, 2011.
    doi:10.1002/pssb.201000782

    16. Schires, K., R. Al Seyab, A. Hurtado, V.-M. Korpijarvi, M. Guina, I. D. Henning, and M. J. Adams, "Optically-pumped dilute nitride spin-VCSEL," Opt. Express, Vol. 20, No. 4, 3550-3555, 2012.
    doi:10.1364/OE.20.003550

    17. Bonnefont, B., M. Messant, O. Boutillier, F. Gauthier-Lafaye, A. Lozes-Dupuy, M. V. Sallet, K. Merghem, L. Ferlazzo, J. C. Harmand, A. Ramdane, J. G. Provost, B. Dagens, J. Landreau, O. Le Gouezigou, and X. Marie, "Optimization and characterization of InGaAsN/GaAs quantum-well ridge laser diodes for high frequency operation," Opt. Quantum Electron., Vol. 38, No. 4-6, 313-324, 2006.
    doi:10.1007/s11082-006-0032-7

    18. Korpijarvi, V.-M., T. Leinonen, J. Puustinen, Harkonen, and M. D. Guina, "11 W single gain-chip dilute nitride disk laser emitting around 1180 nm," Opt. Express, Vol. 18, No. 25, 25633-25641, 2010.
    doi:10.1364/OE.18.025633

    19. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton Univ. Press, Princeton, NJ, 2008.

    20. Calò, G., A. Farinola, and V. Petruzzelli, "Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution," J. Opt. Soc. Amer. B, Vol. 28, No. 7, 1668-1679, Jul. 2011.
    doi:10.1364/JOSAB.28.001668

    21. Calò, G. and V. Petruzzelli, "Compact design of photonic crystal ring resonator 2×2 routers as building blocks for photonic networks on chip," J. Opt. Soc. Am. B, Vol. 31, No. 3, 517-525, 2014.
    doi:10.1364/JOSAB.31.000517

    22. Calò, G. and V. Petruzzelli, "Wavelength routers for optical networks on chip using optimized photonic crystal ring resonators," IEEE Photonics J., Vol. 5, No. 3, 7901011, 2013.
    doi:10.1109/JPHOT.2013.2264278

    23. Calò, G., A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Tunability of photonic band gap notch filters," IEEE Trans. Nanotechnol., Vol. 7, 273-284, 2008.
    doi:10.1109/TNANO.2008.917848

    24. Cowan, A. R. and J. F. Young, "Mode Matching for second-harmonic generation in photonic crystal waveguides," Phys. Rev. B, Vol. 65, 085106, 2002.
    doi:10.1103/PhysRevB.65.085106

    25. Bendickson, J. M., J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in nite, one-dimensional, photonic band-gap structures," Phys. Rev. E, Vol. 53, 4107-4121, 1996.
    doi:10.1103/PhysRevE.53.4107

    26. Calò, G., V. Petruzzelli, L. Mescia, and F. Prudenzano, "Study of gain in photonic band gap active InP waveguides," J. Opt. Soc. Amer. B, Vol. 26, No. 12, 2414-2422, Dec. 2009.
    doi:10.1364/JOSAB.26.002414

    27. Calò, G., M. Grande, D. Alexandropoulos, and V. Petruzzelli, "Photonic band gap active waveguide filters based on diluite nitrides," Phys. Status Solidi C, Vol. 10, No. 4, 567-572, 2013.
    doi:10.1002/pssc.201200375

    28. Calò, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.
    doi:10.2528/PIERL12072401

    29. Calò, G., D. Alexandropoulos, and V. Petruzzelli, "Active photonic band-gap switch based on GalnNAs multiquantum well," IEEE Photonics J., Vol. 4, No. 5, 1936-1946, 2012.
    doi:10.1109/JPHOT.2012.2220128

    30. Chang, C. and S. L. Chuang, "Modelling of strained quantum-well lasers with spin-orbit coupling," IEEE. J. Select. Top. Quantum. Electron., Vol. 1, 218-229, 1995.
    doi:10.1109/2944.401200

    31. Chao, C. Y. and S. L. Chuang, "Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells," Phys. Rev. B, Vol. 46, 4110-4122, 1992.
    doi:10.1103/PhysRevB.46.4110

    32. Chuang, S. L., "Efficient band-structure calculations of strained quantum wells using a two by two Hamiltonian," Phys. Rev. B, Vol. 43, 9649-9661, 1991.
    doi:10.1103/PhysRevB.43.9649

    33. Chuang, S. L., Physics of Optolectronic Devices, Wiley Interscience, New York, 1995.

    34. Kima, C. K. and Y. H. Lee, "Thermal characteristics of optical gain for GaInNAs quantum wells at 1.3 μm," Appl. Phys. Lett., Vol. 79, No. 19, 3038-3040, 2001.
    doi:10.1063/1.1418022

    35. Pregla, R., "MOL-BPM method of lines based beam propagation method," Progress In Electromagnetics Research, Vol. 11, 51-102, 1995.

    36. Gerdes, J., "Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines," Electron. Lett., Vol. 30, 550-551, 1994.
    doi:10.1049/el:19940387

    37. D'Orazio, A., M. De Sario, V. Petruzzelli, and F. Prudenzano, "Bidirectional beam propagation method based on the method of lines for the analysis of photonic band gap structures," Opt. Quantum Electron., Vol. 35, 629-640, 2003.
    doi:10.1023/A:1023955615239

    38. Calò, G., A. D'Orazio, M. Grande, V. Marrocco, and V. Petruzzelli, "Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching," IEEE J. Quantum Electron., Vol. 47, 172-181, 2011.
    doi:10.1109/JQE.2010.2053838

    39. Buus, J., "The effective index method and its application to semiconductor laser," IEEE J. Quant. Elect., Vol. 18, 1083-1089, 1982.
    doi:10.1109/JQE.1982.1071659

    40. Makino, T., "Effective index matrix analysis of distributed feedback semiconductor lasers," IEEE J. Quant. Elect., Vol. 28, 434-440, 1982.

    41. Working Group I, COST 216, "Comparison of different modeling techniques for longitudinally invariant integrated optical waveguides," IEEE Proceedings, Vol. 136, No. 5, 273-280, Oct. 1989.

    42. Batrak, D. V. and S. A. Plisyuk, "Applicability of the effective index method for simulating ridge optical waveguides," Quantum Electron., Vol. 36, 349-352, 2006.
    doi:10.1070/QE2006v036n04ABEH013149

    43. Alexandropoulos, D., M. J. Adams, Z. Hatzopoulos, and D. Syvridis, "Proposed scheme for polarization insensitive GaInNAs-based semiconductor optical amplifiers," IEEE J. Quantum Electron., Vol. 41, 817-822, 2005.
    doi:10.1109/JQE.2005.847551

    44. Vurgaftman, I., J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," J. Appl. Phys., Vol. 89, 5815-5875, 2001.
    doi:10.1063/1.1368156