Vol. 45

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-12-10

A Fast Finite Difference Delay Modeling Solution of Transient Scattering from Lossy Inhomogeneous Dielectric Objects

By Ji Ding, Yanfang Wang, and Jianfeng Li
Progress In Electromagnetics Research M, Vol. 45, 17-25, 2016
doi:10.2528/PIERM15101605

Abstract

A fast finite difference delay modeling (FDDM)-based scheme is presented for analyzing transient electromagnetic scattering from lossy inhomogeneous dielectric objects. The proposed scheme is formulated in the region of the scatterers by expressing the total field as the sum of the incident field and the radiated field due to both the polarization and conduction current density. The current density is discretized in space by Schaubert-Wilton-Glisson basis functions and in time by finite differences. Furthermore, the scheme is accelerated by the fast Fourier transform (FFT) algorithm, which can reduce the memory requirement and computational complexity significantly. Numerical results are presented to illustrate the accuracy and efficiency of the proposed method.

Citation


Ji Ding, Yanfang Wang, and Jianfeng Li, "A Fast Finite Difference Delay Modeling Solution of Transient Scattering from Lossy Inhomogeneous Dielectric Objects," Progress In Electromagnetics Research M, Vol. 45, 17-25, 2016.
doi:10.2528/PIERM15101605
http://www.jpier.org/PIERM/pier.php?paper=15101605

References


    1. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 56-61, 1991.
    doi:10.1109/8.64435

    2. Shanker, B., A. A. Ergin, K. Aygun, and E. Michielssen, "Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation," IEEE Trans. Antennas Propagat., Vol. 48, No. 7, 1064-1074, 2000.
    doi:10.1109/8.876325

    3. Wang, X. B., R. A. Wildman, D. S. Weile, and P. Monk, "A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2442-2452, 2008.
    doi:10.1109/TAP.2008.926753

    4. Wang, X. B. and D. S. Weile, "Implicit Runge-Kutta methods for the discretization of time domain integral equations," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4651-4663, 2011.
    doi:10.1109/TAP.2011.2165469

    5. Wang, X. B. and D. S. Weile, "Electromagnetic scattering from dispersive dielectric scatterers using the finite difference delay modeling method," IEEE Trans. Antennas Propagat., Vol. 58, No. 5, 1720-1730, 2010.
    doi:10.1109/TAP.2010.2044355

    6. Gres, N., A. A. Ergin, B. Shanker, and E. Michielssen, "Volume integral equation based analysis of transient electromagnetic scattering from three-dimensional inhomogeneous dielectric objects," Radio Sci., Vol. 36, 379-386, 2001.
    doi:10.1029/2000RS002342

    7. Shanker, B., K. Aygun, and E. Michielssen, "Fast analysis of transient scattering from lossy inhomogeneous dielectric bodies," Radio Sci., Vol. 41, 39-52, 2004.

    8. Kobidze, G., J. Gao, B. Shanker, and E. Michielssen, "A fast time domain integral equation based scheme for analyzing scattering from dispersive objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 3, 1215-1226, 2005.
    doi:10.1109/TAP.2004.841295

    9. Jung, B.-H., Z. Mei, and T. K. Sarkar, "Transient wave propagation in a general dispersive media using the Laguerre functions in a marching-on-in-degree (MOD) methodology," Progress In Electromagnetics Research, Vol. 118, 135-149, 2011.
    doi:10.2528/PIER11052408

    10. Yilmaz, A. E., D. S.Weile, J.M. Jin, and E. Michielssen, "A hierarchical FFT algorithm (HIL-FFT) for the fast analysis of transient electromagnetic scattering phenomena," IEEE Trans. Antennas Propagat., Vol. 50, No. 10, 971-982, 2002.
    doi:10.1109/TAP.2002.802094

    11. Yilmaz, A. E., J. M. Jin, and E. Michielssen, "A fast Fourier transform accelerated marching-on-in-time algorithm for electromagnetic analysis," Electromagnetics, Vol. 21, 181-197, 2001.
    doi:10.1080/02726340151105166

    12. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, No. 1, 77-85, 1984.
    doi:10.1109/TAP.1984.1143193

    13. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1225-1251, 1996.
    doi:10.1029/96RS02504

    14. Zhang, Z. Q. and Q. H. Liu, "A volume adaptive integral method (VAIM) for 3-D inhomogeneous objects," IEEE Antennas Wireless Propag. Lett., Vol. 1, 102-105, 2002.
    doi:10.1109/LAWP.2002.805126

    15. Nie, X. C., L. W. Li, N. Yuan, T. S. Yeo, and Y. B. Gan, "Precorrected-FFT solution of the volume integral equation for 3-D inhomogeneous dielectric objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 313-320, 2005.
    doi:10.1109/TAP.2004.838803