Vol. 45
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-19
Target Detection in Compound-Gaussian Clutter with Adaptive OFDM Radar
By
Progress In Electromagnetics Research M, Vol. 45, 91-99, 2016
Abstract
This paper mainly deals with the problem of target detection in compound-Gaussian clutter with orthogonal frequency division multiplexing (OFDM) radar. First, the OFDM measurement model is developed to compound-Gaussian clutter by taking advantage of frequency diversity of OFDM radar waveform and we devise a generalized likelihood rate test (GLRT) detector where the target scattering coefficients and clutter covariance matrix are unknown. Then, we propose an adaptive waveform design scheme based on maximizing Mahalanobis distance of the distributions under two hypothesises to improve the detection performance. Finally, the effectiveness of the proposed detector as well as the adaptive waveform design method is demonstrated via numerical examples.
Citation
Yang Xia, Zhiyong Song, Zaiqi Lu, and Qiang Fu, "Target Detection in Compound-Gaussian Clutter with Adaptive OFDM Radar," Progress In Electromagnetics Research M, Vol. 45, 91-99, 2016.
doi:10.2528/PIERM15102001
References

1. Jankiraman, M., B. J. Wessels, and P. V. Genderen, "Design of a multi-frequency FMCW radar," Proceedings of the 28th European Microwave Conference, 548-589, Amsterdam, Netherlands, 1998.

2. Varzakas, P., "Optimization of an OFDM Rayleigh fading system," International Journal of Communication Systems, Vol. 20, No. 1, 1-7, 2007.
doi:10.1002/dac.807

3. Levanon, N., "Multifrequency complementary phase-coded radar signal," IEE Proc. Radar, Sonar and Navigation, Vol. 147, No. 6, 276-284, 2000.
doi:10.1049/ip-rsn:20000734

4. Mohseni, R., A. Sheikhi, and M. A. Masnadi-Shirazi, "Compression of multicarrier phase-coded radar signals based on discrete Fourier transform (DFT)," Progress In Electromagnetics Research C, Vol. 5, 93-117, 2008.

5. Kim, J. H., M. Younis, and W. Wiesbeck, "A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 3, 568-572, 2013.
doi:10.1109/LGRS.2012.2213577

6. Sen, S. and A. Nehorai, "Target detection in clutter using adaptive OFDM radar," IEEE Signal Processing Letters, Vol. 16, No. 7, 592-598, 2009.
doi:10.1109/LSP.2009.2020470

7. Sen, S. and A. Nehorai, "OFDM MIMO radar with mutual-Information waveform design for low-grazing angle tracking," IEEE Transaction on Signal Processing, Vol. 58, No. 6, 3152-3162, 2010.
doi:10.1109/TSP.2010.2044834

8. Wu, X. H., A. A. Kishk, and A. W. Glisson, MIMO-OFDM radar for direction estimation, Vol. 4, No. 1, 28-36, IET Radar, Sonar & Navigation, 2010.

9. Garmatyuk, D. and M. Brenneman, "Adaptive multicarrier OFDM SAR signal processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3780-3790, 2011.
doi:10.1109/TGRS.2011.2165546

10. Sen, S. and A. Nehorai, "Adaptive OFDM radar for target detection in multipath scenarios," IEEE Transaction on Signal Processing, Vol. 59, No. 1, 78-90, 2011.
doi:10.1109/TSP.2010.2086448

11. Sen, S., G. Tang, and A. Nehorai, "Multi-objective optimization of OFDM radar waveform for target detection," IEEE Transaction on Signal Processing, Vol. 59, No. 2, 639-652, 2011.
doi:10.1109/TSP.2010.2089628

12. Kafshgari, S. and R. Mohseni, "The effect of target fluctuation on the OFDM radar detection performance," Proceedings of 20th Telecommunications Forum (TELFOR), 827-830, Belgrade, 2012.

13. Kafshgari, S. and R. Mohseni, "Fluctuating target detection in presence of non Gaussian clutter in OFDM radars," International Journal of Electronics and Communications (AEÜ), 885-893, 2013.
doi:10.1016/j.aeue.2013.04.014

14. Conte, E. and M. Longo, "Modeling and simulation of non-Rayleigh radar clutter," IEE Proc. - F Radar and Signal Processing, Vol. 138, No. 2, 121-130, 1991.
doi:10.1049/ip-f-2.1991.0018

15. Akcakaya, M. and A. Nehorai, "Adaptive MIMO radar design and detection in compound-Gaussian clutter," IEEE Transactions on Aerospace and Electronic System, Vol. 47, No. 3, 2200-2207, 2011.
doi:10.1109/TAES.2011.5937292

16. Maio, A. D. and M. Lops, "Design principles of MIMO radar detectors," IEEE Transactions on Aerospace and Electronic System, Vol. 43, No. 3, 886-898, 2007.
doi:10.1109/TAES.2007.4383581

17. Cui, G., L. Kong, and X. Yang, "Multiple-input multiple-output radar detectors design in non-Gaussian clutter," IET Radar, Sonar & Navigation, Vol. 4, No. 5, 724-732, 2010.
doi:10.1049/iet-rsn.2009.0056

18. Mahalanobis, P. C., "On the generalized distance in statistics," Proc. Nat. Inst. Sci. India, Vol. 2, 49-55, 1936.

19. Anderson, T. W., An Introduction to Multivariate Statistical Analysis, 3rd Ed., Wiley, Hoboken, NJ, 2003.

20. Maesschalck, R. D., D. Jouan-Rimbaud, and D. L. Massart, "The Mahalanobis distance," Chemometrics and Intelligent Laboratory Systems, Vol. 50, 1-18, 2010.

21. Horn, R. A. and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, U.K., 1990.

22. Li, N., G. Cui, and L. Kong, "MIMO radar moving target detection against compound Gaussian clutter," Circuits Syst. Signal Process, Vol. 33, 1819-1839, 2014.
doi:10.1007/s00034-013-9718-9