Vol. 45

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

On the Feasibility of Assessing Burn Wound Healing Without Removal of Dressings Using Radiometric Millimetre-Wave Sensing

By Stuart William Harmer, Sergiy Shylo, Mamta Shah, Nicholas John Bowring, and Amani Yousef Owda
Progress In Electromagnetics Research M, Vol. 45, 173-183, 2016


The authors present transmission data, taken at Ka (36 GHz) and W (95 GHz) bands in the millimetre-wave region of the electromagnetic spectrum, for various dressing materials used in the treatment and management of burn wounds. The results show that such materials are highly transparent (typically > 90% transmission) and, in their dry state, will permit the sensing of the surface of the skin through the thick layers (> 2 cm) of different dressings typically applied in medical treatment of burn wounds. Furthermore, the authors present emissivity data, taken at the same frequency bands, for different regions of human skin on the arm and for samples of chicken flesh with and without skin and before and after localised heat treatment. In vivo human skin has a lower emissivity than chicken flesh samples, 0.3-0.5 compared to 0.6-0.7. However, changes in surface emissivity of chicken samples caused by the short-term application of heat are observable through dressing materials, indicating the feasibility of a millimetre-wave imaging to map changes in tissue emissivity for monitoring the state of burn wounds (and possibly other wounds) non-invasively and without necessitating the removal of the wound dressings.


Stuart William Harmer, Sergiy Shylo, Mamta Shah, Nicholas John Bowring, and Amani Yousef Owda, "On the Feasibility of Assessing Burn Wound Healing Without Removal of Dressings Using Radiometric Millimetre-Wave Sensing," Progress In Electromagnetics Research M, Vol. 45, 173-183, 2016.


    1. The Child Accident Prevention Trust (CAPT), "The costs of burns," Working Together for Safer Children, Aug. 2013, Available: http://www.makingthelink.net/tools/costs-child-accidents/costsburns, Accessed: Sep. 12, 2015.

    2. Arbab, M. H., T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, "Terahertz reflectometry of burn wounds in a rat model," Biomedical Optics Express, Vol. 2, No. 8, 2339-2347, Aug. 2011.

    3. Smulders, P. F. M., "Analysis of human skin tissue by millimeter-wave reflectometry," Skin Research and Technology, Vol. 19, No. 1, 209-216, Apr. 2012, DOI: 10.1111/j.1600-0846.2012.00629.x.

    4. Kharkovsky, S., M. T. Ghasr, M. A. Abou-Khousa, and R. Zoughi, "Near-field microwave and mm-wave noninvasive diagnosis of human skin," International Workshop on Medical Measurements and Applications, 5-7, Italy, May 2009.

    5. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2438-2447, Oct. 2004.

    6. Essen, H., J. M. Essen, D. Nuessler, A. Hommes, C. Krebs, N. Fatihi, and T. Buzug, "Monitoring of wound healing by millimetre wave imaging," 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 1-2, Sep. 2010.

    7. Siegel, P. H., "Microwave symposium digest," IEEE MTT-S International, Vol. 3, 1575-1578, Jun. 2004, ISSN: 0149-645X, Print ISBN: 0-7803-8331-1 INSPEC, Accession Number: 8058048, DOI:10.1109/MWSYM.2004.1338880.

    8. Bardati, F., V. J. Brown, M. P. Ross, and P. Tognolatti, "Microwave radiometry for medical thermal imaging: Theory and experiment," IEEE MTT-S International in Microwave Symposium Digest, Vol. 3, 1287-1290, Jun. 1992, ISSN: 0149-645X, Print ISBN: 0-7803-0611-2 INSPEC, Accession Number: 4296960, DOI: 10.1109/MWSYM.

    9. Dziewonski, M., "Planimetry of thermograms in diagnosis of burn wounds," Scientific Research of the Institute of Mathematics and Computer Science, Vol. 8, No. 1, 33-38, 2009.

    10. Federici, J. F., B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications - Explosives, weapons and drugs," Semiconductor Science and Technology, Vol. 20, No. 7, S266-S280, Jun. 2005.

    11. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," IEEE Publisher, Vol. 95, No. 8, 1683-1690, Aug. 2007, ISSN: 0018-9219 INSPEC, Accession Number: 9633436, DOI:10.1109/JPROC.2007.898832.

    12. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, Sep. 2001.

    13. Oka, S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.

    14. Nashashibi, A. Y., K. Sarabandi, P. Frantzis, R. D. De Roo, and F. T. Ulaby, "An ultrafast wide-band millimeter-wave (mmw) polarimetric radar for remote sensing applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 8, 1777-1786, Aug. 2002, ISSN: 0196-2892 INSPEC, Accession Number: 7416289, DOI:10.1109/TGRS.2002.802462.

    15. Appleby, R., R. N. Anderton, N. H. Thomson, and J. W. Jack, "The design of a real-time 94-GHz passive millimetre-wave imager for helicopter operations," Passive Millimetre-wave and Terahertz Imaging and Technology, Vol. 5619, 38-46, Dec. 2004, DOI:10.1117/12.581336, Available: http://dx.doi.org/10.1117/12.581336, Accessed: Sep. 13, 2015.

    16. Coward, P. and R. Appleby, "Comparison of passive millimeter-wave and IR imagery in a nautical environment," Passive Millimeter-wave Imaging Technology XII, Vol. 7309, No. 730904, Apr. 2009, DOI:10.1117/12.819852, Available: http://dx.doi.org/10.1117/12.819852, Accessed: Sep. 13, 2015.

    17. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmid, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 3, 845-860, Mar. 2012, ISSN: 0018-9480 INSPEC, Accession Number: 12571080, DOI:10.1109/TMTT.2011.2178427.

    18. Wengerl, J., "Automotive mm-wave radar: Status and trends in system design and technology," Automotive Radar and Navigation Techniques, IEE Colloquium. IET, Ref. No. 1998/230, 1-7, 1998, INSPEC, Accession Number: 5877493, DOI:10.1049/ic:19980188.

    19. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 2011, ISSN: 0163-6804 INSPEC, Accession Number: 12036181, DOI:10.1109/MCOM.2011.5783993.

    20. Kemp, M. C., "Millimetre wave and terahertz technology for the detection of concealed threats: A review," Optics and Photonics for Counterterrorism and Crime Fighting II, Vol. 6402, Sep. 2006, DOI:10.1117/12.692612, Available: http://dx.doi.org/10.1117/12.692612, Accessed: Sep. 14, 2015.

    21. Lamb, J. W., "Miscellaneous data on materials for millimetre and submillimetre optics," International Journal of Infrared and Millimeter Waves, Vol. 17, No. 12, 1997-2034, Dec. 1996.

    22. Alekseev, S. I. and M. C. Ziskin, "Human skin permittivity determined by millimeter wave reflection measurements," Bioelectromagnetics, Vol. 28, No. 5, 331-339, Jul. 2007, DOI: 10.1002/bem.20308, Available: http://onlinelibrary.wiley.com/, Accessed: Sep. 14, 2015.

    23. Alabaster, C. M., "The microwave properties of tissue and other lossy dielectrics,", PhD Thesis, Cranfield University, Mar. 2004.

    24. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, Dec. 2008.

    25. Harmer, S. W., N. Bowring, D. Andrews, N. D. Rezgui, M. Southgate, and S. Smith, "A review of nonimaging stand-off concealed threat detection with millimeter-wave radar," IEEE Microwave Magazine, Vol. 13, No. 1, 160-167, Feb. 2012, ISSN: 1527-3342 INSPEC, Accession Number: 12479283, DOI:10.1109/MMM.2011.2174125.

    26. Bardati, F. and D. Solimini, "Radiometric sensing of biological layered media," Radio Science, Vol. 18, No. 6, 1393-1401, Dec. 1983, DOI: 10.1029/RS018i006p01393.

    27. Harmer, S. W., N. Rezgui, N. Bowring, Z. Luklinska, and G. Ren, "Determination of the complex permittivity of textiles and leather in the 14-40 GHz millimetre-wave band using a free-wave transmittance only method," IET Microwaves, Antennas & Propagation, Vol. 2, No. 6, 606-614, Sep. 2008, ISSN: 1751-8725 INSPEC, Accession Number: 10158942, DOI:10.1049/ietmap:20070235.

    28. Aminzadeh, R., M. Saviz, and A. A. Shishegar, "Dielectric properties estimation of normal and malignant skin tissues ats millimeter-wave frequencies using effective medium theory," 22nd Iranian Conference on Electrical Engineering (ICEE), 2014, 1657-1661, IEEE, May 2014.

    29. Olga, B. L., Y. Nikawa, W. Snyder, J. Lin, and K. Mizuno, "Novel microwave and millimeter-wave biomedical applications," 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, 1999, Vol. 1, 186-193, IEEE, Oct. 1999.

    30. Tamyis, N. M., D. K. Ghodgaonkar, M. N. Taib, and W. T. Wui, "Dielectric properties of human skin in vivo in the frequency range 20-38 GHz for 42 healthy volunteers," Proc. of the 28th URSI General Assembly, 2005.