Vol. 48

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-05-02

Highly Coherent Supercontinuum Generation in the Normal Dispersion Liquid-Core Photonic Crystal Fiber

By Zheng Guo, Jinhui Yuan, Chongxiu Yu, Xinzhu Sang, Kuiru Wang, Binbin Yan, Lixiao Li, Shuai Kang, and Xue Kang
Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016
doi:10.2528/PIERM15122302

Abstract

In this paper, a liquid-core photonic crystal fiber (LCPCF) with small hollow-core filled by chalcogenide material CS2 is designed. The supercontinuum (SC) generation in such a LCPCF with nonlinear coefficient of 3327 W-1•km-1 at 1550 nm and wide normal dispersion regime spanning from 1200 to 2500 nm is numerically studied by solving the generalized nonlinear Schrödinger equation. The influences of the pump pulse parameters on the SC spectral width and coherence are demonstrated, and the optimum pump condition for the SC generation is determined. Our study work can provide an alternative way for obtaining highly coherent SC, which is important for the applications in optical coherence tomography, frequency combs, and ultrashort pulse generation.

Citation


Zheng Guo, Jinhui Yuan, Chongxiu Yu, Xinzhu Sang, Kuiru Wang, Binbin Yan, Lixiao Li, Shuai Kang, and Xue Kang, "Highly Coherent Supercontinuum Generation in the Normal Dispersion Liquid-Core Photonic Crystal Fiber," Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016.
doi:10.2528/PIERM15122302
http://www.jpier.org/PIERM/pier.php?paper=15122302

References


    1. Kaminski, C. F., et al., "Supercontinuum radiation for applications in chemical sensing and microscopy," Applied Physics B, Vol. 92, No. 3, 367-378, 2008.
    doi:10.1007/s00340-008-3132-1

    2. Nakasyotani, T., et al., "Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source," Journal of Lightwave Technology, Vol. 24, No. 1, 404, 2006.
    doi:10.1109/JLT.2005.859854

    3. Morioka, T., K. Mori, S. Kawanishi, and M. Saruwatari, "Multi-WDM-channel GBit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photonics Technology Letters, Vol. 6, No. 3, 365-368, 1994.
    doi:10.1109/68.275490

    4. Takara, H., et al., "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electronics Letters, Vol. 36, No. 25, 2089-2090, 2000.
    doi:10.1049/el:20001461

    5. Moon, S. and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express, Vol. 14, No. 24, 11575-11584, 2006.
    doi:10.1364/OE.14.011575

    6. Udem, T., R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature, Vol. 416, No. 6877, 233-237, 2002.
    doi:10.1038/416233a

    7. Jones, D. J., et al., "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science, Vol. 288, No. 5466, 635-639, 2000.
    doi:10.1126/science.288.5466.635

    8. Agrawal, G. P., Nonlinear Fiber Optics, 4th Ed., 2007.

    9. Ranka, J. K., R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Optics Letters, Vol. 25, No. 1, 25-27, 2000.
    doi:10.1364/OL.25.000025

    10. Omenetto, F. G., et al., "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Optics Express, Vol. 14, No. 11, 4928-4934, 2006.
    doi:10.1364/OE.14.004928

    11. Qin, G., et al., "Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber," Optics Letters, Vol. 34, No. 13, 2015-2017, 2009.
    doi:10.1364/OL.34.002015

    12. Gu, X., et al., "Experimental studies of the coherence of microstructure-fiber supercontinuum," Optics Express, Vol. 11, No. 21, 2697-2703, 2003.
    doi:10.1364/OE.11.002697

    13. Genty, G., S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," JOSA B, Vol. 24, No. 8, 1771-1785, 2007.
    doi:10.1364/JOSAB.24.001771

    14. Hooper, L. E., et al., "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Optics Express, Vol. 19, No. 6, 4902-4907, 2011.
    doi:10.1364/OE.19.004902

    15. Li, P., L. Shi, and Q.-H. Mao, "Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses," Chinese Physics B, Vol. 22, No. 7, 074204, 2013.
    doi:10.1088/1674-1056/22/7/074204

    16. Yan, P., et al., "Numerical simulation on the coherent time-critical 2–5 μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile," Optics Communications, Vol. 293, 133-138, 2013.
    doi:10.1016/j.optcom.2012.11.093

    17. Hartung, A., A. M. Heidt, and H. Bartelt, "Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation," Optics Express, Vol. 19, No. 8, 7742-7749, 2011.
    doi:10.1364/OE.19.007742

    18. Poli, F., et al., "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers," IEEE Photonics Technology Letters, Vol. 16, No. 4, 1065-1067, 2004.
    doi:10.1109/LPT.2004.824624

    19. Saitoh, K. and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Optics Express, Vol. 12, No. 10, 2027-2032, 2004.
    doi:10.1364/OPEX.12.002027

    20. Bozolan, A., et al., "Supercontinuum generation in a water-core photonic crystal fiber," Optics Express, Vol. 16, No. 13, 9671-9676, 2008.
    doi:10.1364/OE.16.009671

    21. Zhang, H., et al., "Supercontinuum generation in chloroform-filled photonic crystal fibers," Optik-International Journal for Light and Electron Optics, Vol. 121, No. 9, 783-787, 2010.
    doi:10.1016/j.ijleo.2008.09.026

    22. Zhang, R., J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Optics Express, Vol. 14, No. 15, 6800-6812, 2006.
    doi:10.1364/OE.14.006800

    23. Kedenburg, S., et al., "Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 μm range," Optics Express, Vol. 23, No. 7, 8281-8289, 2015.
    doi:10.1364/OE.23.008281

    24. Churin, D., et al., "Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2," Optical Materials Express, Vol. 3, No. 9, 1358-1364, 2013.
    doi:10.1364/OME.3.001358

    25. Yiou, S., et al., "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Optics Express, Vol. 13, No. 12, 4786-4791, 2005.
    doi:10.1364/OPEX.13.004786

    26. Cox, F. M., A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Optics Express, Vol. 14, No. 9, 4135-4140, 2006.
    doi:10.1364/OE.14.004135

    27. Hult, J., "A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers," Journal of Lightwave Technology, Vol. 25, No. 12, 3770-3775, 2007.
    doi:10.1109/JLT.2007.909373

    28. Dudley, J. M., G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics, Vol. 78, No. 4, 1135, 2006.
    doi:10.1103/RevModPhys.78.1135

    29. Klimczak, M., et al., "Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump," Optics Express, Vol. 22, No. 26, 31635-31645, 2014.
    doi:10.1364/OE.22.031635

    30. Zaitsu, S., Y. Kida, and T. Imasaka, "Stimulated Raman scattering in the boundary region between impulsive and nonimpulsive excitation," JOSA B, Vol. 22, No. 12, 2642-2650, 2005.
    doi:10.1364/JOSAB.22.002642