Vol. 47
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-13
Properties and Applications of Error Coefficient Matrix in Linear Antenna Array Design
By
Progress In Electromagnetics Research M, Vol. 47, 171-180, 2016
Abstract
This paper presents the theoretical framework for a new technique in the field of linear antenna arrays with amplitude control called error coefficient matrix. First of all, the array factor is expressed as a summation of contribution from the elements of the array. It will be shown that for small errors in excitation amplitude, the error in the overall radiation pattern at a given angle is a summation of errors contributed by the individual elements of the array at that angle. An error coefficient matrix is proposed, and its properties are discussed in great detail. The accuracy of the proposed method is investigated for varying levels of errors in weights and for varying number of error elements, using Monte-Carlo simulation. Finally, the applications of this new technique in the field of antenna arrays are presented.
Citation
Bhargav Appasani, "Properties and Applications of Error Coefficient Matrix in Linear Antenna Array Design," Progress In Electromagnetics Research M, Vol. 47, 171-180, 2016.
doi:10.2528/PIERM16010201
References

1. Elliott, R. E., "Mechanical and electrical tolerances for two-dimensional scanning antenna arrays," IRE Trans., Vol. 6, No. 1, 114-120, Jan. 1958.

2. Rodriguez, J. A., F. Ares, H. Palacios, and J. Vassal'lo, "Finding defective elements in planar arrays using genetic algorithms," Progress In Electromagnetics Research, Vol. 29, 25-37, 2000.
doi:10.2528/PIER00011401

3. Vakula, D. and N. V. S. N. Sarma, "Fault diagnosis of planar antenna arrays using neural networks," Progress In Electromagnetics Research M, Vol. 6, 35-46, 2009.
doi:10.2528/PIERM09011204

4. Acharya, O., A. Patnaik, and B. Choudhury, "Fault finding in antenna arrays using bacteria foraging optimization technique," National Conference on IEEE Communications (NCC), 1-5, Bangalore, 2011.

5. Oliveri, G., R. Paolo, and A. Massa, "Reliable diagnosis of large linear arrays - A Bayesian compressive sensing approach," IEEE Trans. Antennas Propag., Vol. 60, 4627-4636, 2012.
doi:10.1109/TAP.2012.2207344

6. Harrou, F. and M. N. Nounou, "Monitoring linear antenna arrays using exponentially weighted moving average based fault detection scheme," System Science and Control Engineering, Vol. 2, 433-443, 2014.
doi:10.1080/21642583.2014.913821

7. Migliore, M. D., et al. "A sparse recovery approach for pattern correction of active arrays in presence of element failures," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1027-1030, 2015.
doi:10.1109/LAWP.2014.2374605

8. Zhang, Y. and H. Zhao, "Failure diagnosis of a uniform linear array in the presence of mutual coupling," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1010-1013, 2015.
doi:10.1109/LAWP.2015.2389894

9. Anselmi, N., L. Manica, P. Rocca, and A. Massa, "Tolerance analysis of antenna arrays through interval arithmetic," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5496-5507, Nov. 2013.
doi:10.1109/TAP.2013.2276927

10. Manica, L., N. Anselmi, P. Rocca, and A. Massa, "Robust mask-constrained linear array synthesis through an interval-based particle swarm optimisation," IET Microw. Antennas Propag., Vol. 7, No. 12, 976-984, Sep. 2013.
doi:10.1049/iet-map.2013.0203

11. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, 1997.

12. Ren, X. F., J. A. Azevedo, and A. M. Casimiro, "Synthesis of non-uniformly spaced arrays using the Fourier transform and window techniques," IET Microw. Antennas Propag., Vol. 3, 1245-1253, 2009.
doi:10.1049/iet-map.2008.0217

13. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 51, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361

14. Chen, K., Z. He, and C. Han, "A modified real GA for the sparse linear array synthesis with multiple constraints," IEEE Trans. Antennas Propag., Vol. 54, 2169-2173, 2006.
doi:10.1109/TAP.2006.877211

15. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum side lobe level and null control using particle swarm optimization," IEEE Trans. Antennas Propag., Vol. 53, 2674-2679, 2005.
doi:10.1109/TAP.2005.851762

16. Bhargav, A. and N. Gupta, "Multi-objective genetic optimization of non-uniform linear array with low sidelobes and beamwidth," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1547-1549, 2013.
doi:10.1109/LAWP.2013.2292573

17. Mautz, J. R. and R. F. Harrington, "Computational methods for antenna pattern synthesis," IEEE Trans. Antennas Propag., Vol. 23, 507-512, Jul. 1975.

18. Bucci, O. M., G. D. Elia, and G. Romito, "Power synthesis of conformal arrays by a generalized projection method," IEE Proceedings on Microwaves Antennas and Propagation, Vol. 142, No. 6, 467-471, Dec. 1995.
doi:10.1049/ip-map:19952290

19. Khzmalyan, A. D. and A. S. Kondratyev, "Phase-only synthesis of antenna array amplitude pattern," International Journal of Electronics, Vol. 81, No. 5, 585-589, 1996.
doi:10.1080/002072196136490

20. Haupt, R. L., "Phase-only adaptive nulling with a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 45, 1009-1015, Jun. 1997.
doi:10.1109/8.585749

21. Vaskelainen, L. I., "Constrained least-square optimization in conformal array antenna synthesis," IEEE Trans. Antennas Propag., Vol. 55, 859-867, Mar. 2007.
doi:10.1109/TAP.2007.891860

22. Comisso, M. and R. Vescovo, "Fast co-polar and cross-polar 3D pattern synthesis with dynamic range ratio reduction for conformal antenna arrays," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 614-626, Feb. 2013.
doi:10.1109/TAP.2012.2224834

23. Zhang, Y., Z. Zhao, Z. Nie, and Q. H. Liu, "Full-polarisation three-dimensional pattern synthesis for conformal conical arrays with dynamic range ratio constraint by using the initializations based on equivalence theorem," IET Microw. Antennas Propag., Vol. 9, No. 15, 1659-1666, Dec. 2015.
doi:10.1049/iet-map.2015.0273

24. Miller, K., "Synthesizing linear-array patterns via matrix computation of element currents," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 85-96, Oct. 2013.
doi:10.1109/MAP.2013.6735478