Vol. 47

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-03-22

An Efficient Analysis on the Fitting Error Caused by the Deformation of Metal Pylon in the RCS Measurement

By Da-Wei An and Wu-Yi Chen
Progress In Electromagnetics Research M, Vol. 47, 45-55, 2016
doi:10.2528/PIERM16011106

Abstract

Target-supporting metal pylon predominantly contributes to background scattering in radar cross section measurement. The separation of scattering from the target and background demands stable background scattering. However, target translation creates variations in metal pylon deformation and changes its scattering, which yields errors in background separation. Analyzing the relationship between the structural parameters of metal pylon and the error caused by its deformation is necessary to reduce errors. A simplified mapping of the relationship is deduced according to the mechanical and electromagnetic theories involved. The approach combines geometrical theory of diffraction for pylon scattering and numerical integration in calculating the deflection of metal pylon to determine the variation of metal pylon scattering, and calculates error in the circle fitting caused by the variation. Simulations with commercial software are employed to verify the efficiency of the numerical model. Although it is slightly contaminated by target-pylon interaction, the approach is 800 times faster than the software simulation. An example of optimization and analysis is provided to demonstrate the trends of optimum structural parameters and fitting error within different pylon weight limits. Such an example proves that the approach can overcome the deficiency of traditional analysis which separately assesses the mechanical and RCS performances of metal pylon.

Citation


Da-Wei An and Wu-Yi Chen, "An Efficient Analysis on the Fitting Error Caused by the Deformation of Metal Pylon in the RCS Measurement," Progress In Electromagnetics Research M, Vol. 47, 45-55, 2016.
doi:10.2528/PIERM16011106
http://www.jpier.org/PIERM/pier.php?paper=16011106

References


    1. Knott, E. F., J. Shaeffer, and M. Tuley, Radar Cross Section, 2nd Ed., SciTech Publishing, New York, 2004.

    2. Muth, L. A., C. M. Wang, and T. Conn, "Robust separation of background and target signals in radar cross section measurements," IEEE Trans. Instrum. Meas., Vol. 54, No. 6, 2462-2468, 2005.
    doi:10.1109/TIM.2005.858126

    3. Xu, X.-J., "A background and target signal separation technique for exact RCS measurement," International Conference on Electromagnetics in Advanced Applications (ICEAA), 891-894, 2012.

    4. Zhao, J.-C. and M. Lv, "Using Kasa method to separate target’s RCS characters from background in electromagnetic sensing within anechoic chamber measurement," Green Computing and Communications, IEEE and Internet of Things, IEEE International Conference on and IEEE Cyber, Physical and Social Computing, 1058-1063, Beijing, 2013.
    doi:10.1109/GreenCom-iThings-CPSCom.2013.180

    5. MI Technologies, MI-830 Family of RCS Pylons, Catalog No.: DS-830-1.3/08/13.

    6. Orbit/FR, RCS Products, http://www.orbitfr.com/sites/www.orbitfr.com/files/RCS_pylon_brochure.pdf.

    7. Knott, E. F., Radar Cross Section Measurements, SciTech Publishing, New York, 2006.

    8. Lai, A. K.-Y. and M. D. Burnside, "A GTD analysis of ogive pedestal,", 716148-8, Ohio State University, USA, 1986.

    9. Jiao, H.-J., Y.-D. Zhang, and W.-Y. Chen, "The lightweight design of low RCS pylon based on structural bionics," Journal of Bionic Engineering, Vol. 7, No. 2, 182-190, 2010.
    doi:10.1016/S1672-6529(09)60207-9

    10. Burns, J., E. Le Baron, and G. Fliss, "Characterization of target-pylon interactions in RCS measurements," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 144-147, 1997.

    11. Chen, P.-H., X.-J. Xu, and Y.-S. Jiang, "Comparison of methods to extract target scattering from scattering of target-metal pylon combination," International Radar Conference, 1-6, Lille, 2014.

    12. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
    doi:10.1109/PROC.1974.9651

    13. Dassault Systèmes, CATIA V5 R20 Infrastructure User Guide, 2009.

    14. ANSYS, Inc., ANSYS Help 14.5, 2012.

    15. EM Software & Systems, S.A. (Pty) Ltd., FEKO User’s Manual Suite 6.0, 2010.

    16. An, D.-W. and W.-Y. Chen, "Simulation approach to calculate the separation error of target and background from metal pylon deformation," International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), 719-722, 2015.