Vol. 47

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-03-30

Compressive Sensing SFGPR Imaging Algorithm Based on Subspace Projection Ground Clutter Suppression

By Yanpeng Sun, Xiaodan Lu, and Shi Zhang
Progress In Electromagnetics Research M, Vol. 47, 87-97, 2016
doi:10.2528/PIERM16011503

Abstract

Stepped frequency ground penetrating radar (SFGPR) has received increasing attention in the field of ground penetrating radar technology due to its superiority in the detection performance. Compressed sensing (CS) SFGPR imaging reconstruction method can not merely reduce the measured imaging data volume, but also reconstruct target image with less sidelobe. However, the imaging algorithm using CS approach will lose efficacy in strong clutter environment. To solve this problem, a CS SFGPR imaging reconstruction method combined with subspace projection clutter suppression approach is proposed in this paper. First, all frequency domain data at each measurement position are reconstructed from reduced frequency measurements via sparse reconstruction technique. Then subspace projection ground clutter suppression technique is used to suppress the strong ground clutter. Finally, orthogonal matching pursuit (OMP) algorithm is utilized to reconstruct the underground target image. Synthetic and experimental data processing results have verified the effectiveness and accuracy of the proposed imaging method.

Citation


Yanpeng Sun, Xiaodan Lu, and Shi Zhang, "Compressive Sensing SFGPR Imaging Algorithm Based on Subspace Projection Ground Clutter Suppression," Progress In Electromagnetics Research M, Vol. 47, 87-97, 2016.
doi:10.2528/PIERM16011503
http://www.jpier.org/PIERM/pier.php?paper=16011503

References


    1. Daniels, D. J., "Surface-penetrating radar," Electron. Commun. Eng. J., Vol. 8, No. 4, 165-182, 1996.
    doi:10.1049/ecej:19960402

    2. Øyan, M. J., S. Hamran, L. Hanssen, and D. Plettemerier, "Ultrawideband gated step frequency ground-penetrating radar," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 1, 212-220, Jan. 2012.
    doi:10.1109/TGRS.2011.2160069

    3. Nicolaescu, I., "Improvement of stepped-frequency continuous wave ground-penetrating radar cross-range resolution," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 1, 85-92, Jan. 2013.
    doi:10.1109/TGRS.2012.2198069

    4. Counts, T., A. C. Gurbuz, W. R. Scott, J. H. McCellan, and K. Kim, "Multistatic ground-penetrating radar experiments," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, 2544-2553, Aug. 2007.
    doi:10.1109/TGRS.2007.900677

    5. Zhuge, X. and A. G. Yarovoy, "Three-dimensional near-field MIMO array imaging using range migration techniques," IEEE Trans. Image Proc., Vol. 21, No. 6, 3026-3033, Jun. 2012.
    doi:10.1109/TIP.2012.2188036

    6. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
    doi:10.1109/TIT.2006.871582

    7. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, Feb. 2006.
    doi:10.1109/TIT.2005.862083

    8. Cetin, M., I. Stojanovic, N. O. Onhon, K. R. Varshney, S. Samadi, W. C. Karl, and A. S. Willsky, "Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing," IEEE Signal Process. Mag., Vol. 31, No. 4, 27-40, Jul. 2014.
    doi:10.1109/MSP.2014.2312834

    9. Gurbuz, A. C., J. H. McClellan, and W. R. Scott, "A compressive sensing data acquisition and imaging method for stepped frequency GPRs," IEEE Trans. Signal Process, Vol. 57, No. 7, 2640-2650, Jul. 2009.
    doi:10.1109/TSP.2009.2016270

    10. Suksmono, A. B., E. Bharata, A. A. Lestari, A. G. Yarovoy, and L. P. Ligthart, "Compressive stepped-frequency continous-wave ground penetrating radar," IEEE Geosci. Remote Sens. Lett., Vol. 7, No. 4, 665-669, Oct. 2010.
    doi:10.1109/LGRS.2010.2045340

    11. Qu, L. and Y. Yang, "Investigation of air/ground reflection and antenna beamwidth for compressive sensing SFCW GPR migration imaging," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 8, 3143-3149, Aug. 2012.
    doi:10.1109/TGRS.2011.2179049

    12. Tuncer, M. A. C. and A. C. Gurbuz, "Ground reflection removal in compressive sensing ground penetrating radars," IEEE Geosci. Remote Sens. Lett., Vol. 9, No. 1, 23-27, Jan. 2012.
    doi:10.1109/LGRS.2011.2158981

    13. Yang, J., T. Jin, X. Huang, J. Thompson, and Z. Zhou, "Sparse MIMO array forward-looking GPR imaging based on compressed sensing in clutter environment," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 7, 4480-4494, Jul. 2014.
    doi:10.1109/TGRS.2013.2282308

    14. Soldovieri, F., R. Solimene, L. L. Monte, M. Bavusi, and A. Loperte, "Sparse reconstruction from GPR data with applications to rebar detection," IEEE Trans. Instrum. Meas., Vol. 60, No. 3, 1070-1079, Mar. 2011.
    doi:10.1109/TIM.2010.2078310

    15. Ambrosanio, M. and V. Pascazio, "A compressive-sensing-based approach for the detection and characterization of buried objects," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 8, No. 7, 3386-3395, Jul. 2015.
    doi:10.1109/JSTARS.2015.2421812

    16. Krueger, K. R., J. H. McClellan, and W. R. Scott, "Efficient algorithm design for GPR imaging of landmines," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 7, 4010-4021, Jul. 2015.
    doi:10.1109/TGRS.2015.2388786

    17. Mayordomo, A. M. and A. Yarovoy, "Optimal background subtraction in GPR for humanitarian demining," Proc. 5th Eur. Radar Conf., 48-51, Oct. 2008.

    18. Kovalenke, V., A. Yarovoy, and L. P. Ligthart, "A novel clutter suppression algorithm for landmine detection with GPR," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3740-3751, Nov. 2007.
    doi:10.1109/TGRS.2007.903694

    19. Abujarad, F., A. Jostingmeier, and A. S. Omar, "Clutter removal for landmine using different signal processing techniques," Proc. 10th Int. Conf. Ground Penetrating Radar, 697-700, Delft, The Netherlands, Jun. 2004.

    20. Hayashi, N. and M. Sato, "F-k filter designs to suppress direct waves for bistatic ground penetrating radar," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1433-1444, Mar. 2010.
    doi:10.1109/TGRS.2009.2032536

    21. Wu, R., J. Liu, T. Li, Q. Gao, H. Li, and B. Zhang, "Progress in the research of ground bounce removal for landmine detection with ground penetrating radar," PIERS Proceedings, 336-340, Hangzhou, China, Aug. 22-26, 2005.

    22. Solimene, R., A. Cuccaro, A. Dell’ Aversano, I. Catapano, and F. Soldovier, "Ground clutter removal in GPR surveys," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 7, No. 3, 792-798, Mar. 2014.
    doi:10.1109/JSTARS.2013.2287016

    23. Mallat, S. and Z. Zhang, "Matching pursuit with time-frequency dictionaries," IEEE Trans. Signal Process., Vol. 41, No. 12, 3397-3415, Dec. 1993.
    doi:10.1109/78.258082

    24. Tropp, J. and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4666, Dec. 2007.
    doi:10.1109/TIT.2007.909108

    25. Online Available: http://users.ece.gatech.edu/~wrscott.