Vol. 47

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-04-09

Design of a Compact Patch Antenna Loading Periodic Jerusalem Crosses

By Siya Mi and Yee Hui Lee
Progress In Electromagnetics Research M, Vol. 47, 151-159, 2016
doi:10.2528/PIERM16022202

Abstract

A compact microstrip antenna loaded with periodic patterns etched in the ground plane is proposed. The etched patterns are Jerusalem crosses which look the same as one of the common electromagnetic band gap structures, uni-planar electromagnetic band gap. In this paper, the dielectric backed with etched ground plane is analysed in terms of metamaterial. The permittivity and permeability are derived from the simulated reflection and transmission coefficients. Then a patch is stacked on the metasubstrate, and the antenna is designed to operate at 2.4 GHz. The proposed antenna has a small dimension in comparison to two other published compact antennas. Compared to the conventional patch antenna, the proposed antenna achieves a 68.38% miniaturization of the patch, and a 2.84 times impedance bandwidth broadening. Furthermore, the operating frequency of the proposed antenna can be tuned over a large range of frequencies by physically adjusting the length of the surrounding slots or by voltage adjusting of the voltage controlled tunable inductive elements. The proposed antenna is fabricated and measured. The measurement results are found to agree well with the simulation ones.

Citation


Siya Mi and Yee Hui Lee, "Design of a Compact Patch Antenna Loading Periodic Jerusalem Crosses," Progress In Electromagnetics Research M, Vol. 47, 151-159, 2016.
doi:10.2528/PIERM16022202
http://www.jpier.org/PIERM/pier.php?paper=16022202

References


    1. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
    doi:10.1109/TAP.2003.817983

    2. Li, H., B. Z. Wang, G. Zheng, and W. Shao, "A reflectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
    doi:10.2528/PIERC10070303

    3. Jia, Y., Y. Liu, H. Wang, K. Li, and S. Gong, "Low-RCS high-gain and wideband mushroom antenna," IEEE Antennas Wireless Propagation Letter, Vol. 14, 277-280, 2015.
    doi:10.1109/LAWP.2014.2363071

    4. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electronagnetics Research, Vol. 120, 51-66, 2011.
    doi:10.2528/PIER11062909

    5. Xu, H.-X., G.-H. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
    doi:10.2528/PIER12081008

    6. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Crzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 15, 295-328, 2005.
    doi:10.2528/PIER04070701

    7. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
    doi:10.2528/PIER13120902

    8. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antenna using a metamaterial-inspired technique," IEEE Transactions on Antenna and Propagation, Vol. 60, No. 5, 2175-2182, 2012.
    doi:10.1109/TAP.2012.2189699

    9. Saghanezhad, S. A. H. and Z. Atlasbaf, "Miniaturized dual-band CPW-fed antennas loaded with U-shaped metamaterials," IEEE Antennas Wireless Propagation Letter, Vol. 14, 658-661, 2015.
    doi:10.1109/LAWP.2014.2376554

    10. Yang, X. M., Q. H. Sun, Y. Jing, Q. Cheng, X. Y. Zhou, H. W. Kong, and T. J. Cui, "Increasing the bandwidth of microstrip patch antenna by loading compact artificial magneto-dielectrics," IEEE Transactions on Antenna and Propagation, Vol. 59, No. 2, 373-378, 2011.
    doi:10.1109/TAP.2010.2096388

    11. Wang, G. D., M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, "Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses," Chinese Physics B, Vol. 23, No. 1, 017802, 2013.
    doi:10.1088/1674-1056/23/1/017802

    12. Arezoomand, A. S., F. B. Zarrabi, S. Heydari, and N. P. Gandji, "Independent polarization and multi-band THz absorber base on Jerusalem cross," Optics Communications, Vol. 352, 121-126, 2015.
    doi:10.1016/j.optcom.2015.05.003

    13. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
    doi:10.1103/PhysRevB.65.195104

    14. Hasar, U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetics parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425-441, 2012.
    doi:10.2528/PIER12072412

    15. Szab, Z., G. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 10, 2646-2653, 2010.
    doi:10.1109/TMTT.2010.2065310

    16. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, 1997.

    17. Cai, T., G.-M. Wang, and J.-G. Liang, "Analysis and design of novel 2-d transmission line metamaterial and its application to compact dualband antenna," IEEE Antennas Wireless Propagation Letter, Vol. 13, 555-558, 2014.

    18. Turpin, J. P., D. H., and D. E. Wolfe, "Design considerations for spatially reconfigurable metamaterials," IEEE Transactions on Antenna and Propagation, Vol. 63, No. 8, 3513-3520, 2015.
    doi:10.1109/TAP.2015.2431718