Vol. 47

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-04-13

Study of UPML Absorbing Boundary Condition for the Five-Step LOD-FDTD Method

By Lixia Yang, Xuejian Feng, and Lunjin Chen
Progress In Electromagnetics Research M, Vol. 47, 181-189, 2016
doi:10.2528/PIERM16022304

Abstract

In this paper, the uniaxial anisotropic perfectly matched layer (UPML) absorbing boundary condition in unconditionally stable five-step locally one-dimensional finite-difference time-domain (LOD5-FDTD) method is deduced. The UPML absorbing boundary condition (ABC) is validated based on comparison with a simulation in larger domain (and thus without reflection) in the first test. Then using a sinusoidal source, target field phase distribution surrounded by the UPML-ABC is analyzed. The results further illustrate the stability and efficiency of the UPML absorbing boundary condition.

Citation


Lixia Yang, Xuejian Feng, and Lunjin Chen, "Study of UPML Absorbing Boundary Condition for the Five-Step LOD-FDTD Method," Progress In Electromagnetics Research M, Vol. 47, 181-189, 2016.
doi:10.2528/PIERM16022304
http://www.jpier.org/PIERM/pier.php?paper=16022304

References


    1. Saxena, A. K. and K. V. Srivastava, "A three-dimensional unconditionally stable five-step LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 62, No. 3, 1321-1329, Mar. 2014.
    doi:10.1109/TAP.2013.2293790

    2. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBMJ, Vol. 11, 215-234, Mar. 1967.
    doi:10.1147/rd.112.0215

    3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory. Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
    doi:10.1109/22.795075

    4. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, Nov. 1999.
    doi:10.1109/75.808026

    5. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 85-87, Feb. 2007.
    doi:10.1109/LMWC.2006.890166

    6. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
    doi:10.1109/TAP.2008.2005544

    7. Do Nascimento, V. E., B. H. V. Borges, and F. L. Teixeira, "Split-field PML implementations for the unconditionally stable LOD-FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 7, 398-400, Jul. 2006.
    doi:10.1109/LMWC.2006.877132

    8. Ahmed, I., E. Li, and K. Krohne, "Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 816-819, Dec. 2007.
    doi:10.1109/LMWC.2007.910458

    9. Gedney, S. D., "An Anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antenna Propag., Vol. 44, No. 12, 1630-1639, Dec. 1996.
    doi:10.1109/8.546249

    10. Sun, W., N. G. Loeb, and Q. Fu, "Finite-difference time domain solution of light scattering and absorption by particles in an absorbing medium," Appl. Opt., Vol. 41, 5728-5743, Sep. 2002.
    doi:10.1364/AO.41.005728

    11. Sun, W., H. Pan, and G. Videen, "General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface," Appl. Opt., Vol. 48, 6015-6025, Nov. 2009.

    12. Wei, B., S. Zhang, F. Wang, and D. Ge, "A novel UPML FDTD absorbing boundary condition for dispersive media," Waves in Random and Complex Media, Vol. 20, 511-527, Aug. 2010.
    doi:10.1080/17455030.2010.496005

    13. Liang, F. and G. Wang, "Study of Mur's and UPML absorbing boundary condition for the LOD-FDTD method," ICMMT, Vol. 2, 947-949, 2008.

    14. Ahmed, I., E. H. Khoo, and L. Erping, "Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 58, No. 3, 832-837, Mar. 2010.
    doi:10.1109/TAP.2009.2039334

    15. Omar, R., "Efficient LOD-SC-PML formulations for electromagnetic fields in dispersive media," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 297-299, 2012.
    doi:10.1109/LMWC.2012.2197819

    16. Taflove, A. and S. C. Hagness, Computational electrodynamics the finite-difference time-domain method, 3rd Ed., 293, Artech House, Norwood, MA, 2005.