Vol. 48

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-20

Study of Parabolic Equation Method for Millimeter-Wave Attenuation in Complex Meteorological Environments

By Nan Sheng, Xuan-Ming Zhong, Qinghong Zhang, and Cheng Liao
Progress In Electromagnetics Research M, Vol. 48, 173-181, 2016
doi:10.2528/PIERM16050201

Abstract

The parabolic equation (PE) method for estimating propagation characteristics of millimeter wave, which takes into account of attenuation caused by complex meteorological environment, is proposed. The meteorological environment is treated as a mixture composed of hydrometeors and atmospheric gases. Effective permittivity of the mixture is considered in this paper. Based on the effective permittivity, the PE model for estimating propagation attenuation of millimeter wave is developed via modifying the refractive index. Finally, the model is employed to simulate the propagation characteristics of millimeter wave in complex geographical environments of irregular terrain and rough sea surface, and in complex meteorological environments of standard atmosphere, rain and fog.

Citation


Nan Sheng, Xuan-Ming Zhong, Qinghong Zhang, and Cheng Liao, "Study of Parabolic Equation Method for Millimeter-Wave Attenuation in Complex Meteorological Environments," Progress In Electromagnetics Research M, Vol. 48, 173-181, 2016.
doi:10.2528/PIERM16050201
http://www.jpier.org/PIERM/pier.php?paper=16050201

References


    1. Sebastian, D., A. Serdal, S. Steffen, M. Hermann, T. Axel, L. Amulf, A. Oliver, Z. Thomas, and K. Ingmar, "A W-band MMIC radar system for remote detection of vital signs," J. Infrared Milli. Terahz. Waves, Vol. 30, No. 12, 1250-1267, 2012.

    2. Ziegler, V., F. Schubert, B. Schulte, A. Giere, R. Koerber, and T. Waanders, "Helicopter near-field obstacle warning system based on low-cost millimeter-wave radar technology," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 658-665, 2013.
    doi:10.1109/TMTT.2012.2228220

    3. Brady, J., N. Behdad, and A. M. Sayeed, "Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3814-3827, 2013.
    doi:10.1109/TAP.2013.2254442

    4. Wang, P., Y. L, and B. Vucetic, "Millimeter wave communications with symmetric uniform circular antenna arrays," IEEE Commun. Lett., Vol. 18, No. 8, 1307-1310, 2014.
    doi:10.1109/LCOMM.2014.2332334

    5. Xiong, H., Radiowave Propagation, 487-501, Publishing House of Electronics Industry, Beijing, 2000.

    6. Marcus, M. and B. Pattan, "Millimeter wave propagation: Spectrum management implications," IEEE Microwave Mag., Vol. 6, No. 2, 54-62, 2005.
    doi:10.1109/MMW.2005.1491267

    7. Leontovich, M. A. and V. A. Fock, "Solution of propagation of electromagnetic waves along the Earth’s surface by the method of parabolic equation," J. Phys. USSR, Vol. 10, 13-23, 1946.

    8. Levy, M. F., Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Press, London, U.K., 2000.
    doi:10.1049/PBEW045E

    9. Donohue, D. J. and J. R. Kuttler, "Propagation modeling over terrain using the parabolic wave equation," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 260-277, 2000.
    doi:10.1109/8.833076

    10. Apaydin, G. and L. Sevgi, "A novel split-step parabolic-equation package for surface-wave propagation prediction along multiple mixed irregular-terrain paths," IEEE Antennas Propag. Mag., Vol. 52, No. 4, 90-97, 2010.
    doi:10.1109/MAP.2010.5638238

    11. Karimian, A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, "Multiple grazing angle sea clutter modeling," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4408-4417, 2012.
    doi:10.1109/TAP.2012.2207033

    12. Apaydin, G. and L. Sevgi, "MATLAB-based FEM-parabolic-equation tool for path-loss calculations along multi-mixed-terrain paths," IEEE Antennas Propag. Mag., Vol. 56, No. 3, 221-236, 2014.
    doi:10.1109/MAP.2014.6867720

    13. Sheng, N., C. Liao, W. B. Lin, Q. H. Zhang, and R. J. Bai, "Modeling of millimeter wave propagation in rain based on parabolic equation method," IEEE Antennas Wireless Propag. Lett., Vol. 13, 3-6, 2014.
    doi:10.1109/LAWP.2013.2294737

    14. Feit, M. D. and J. A. Fleck, "Light propagation in graded-index fibers," Application Optics, Vol. 17, No. 24, 3990-3998, 1978.
    doi:10.1364/AO.17.003990

    15. Liebe, H. J., "MPM - An atmospheric millimeter-wave propagation model," Int. J. Infrared Millimeter Waves, Vol. 10, No. 6, 631-650, 1989.
    doi:10.1007/BF01009565

    16. Wang, Y. and G. Y. Lu, "Research and stimulation of processing method on radio propagation environment attenuation over the ocean," Ship Electronic Engineering, Vol. 33, No. 5, 86-89, 2013.

    17. ITU-R, Attenuation by atmospheric gases, ITU-R Recommendation P.676-9, Geneva, 2012.

    18. Sihvola, A. H., Electromagnetic Mixing Formulas and Applications, The Institution of Electrical Engineers Press, London, 1999.
    doi:10.1049/PBEW047E

    19. Huang, J. Y., W. He, and S. H. Gong, "The distortion characteristics of a pulse wave propagating through fog medium at millimeter wave band," J. Infrared Milli. Terahz. Waves, Vol. 28, No. 10, 889-899, 2007.
    doi:10.1007/s10762-007-9266-0

    20. Kharadly, M. M. Z. and S.-V. C. Angela, "A simplified approach to the evaluation of EMW propagation characteristics in rain and melting snow," IEEE Trans. Antennas Propag., Vol. 36, No. 2, 282-296, 1988.
    doi:10.1109/8.1106

    21. Donohue, D. J. and J. R. Kuttler, "Propagation modeling over terrain using the parabolic wave equation," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 260-277, 2000.
    doi:10.1109/8.833076