Vol. 51
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-17
Simulation of Multi-Layer Rough Surfaces Media in the Passive Millimeter-Wave Imaging
By
Progress In Electromagnetics Research M, Vol. 51, 51-62, 2016
Abstract
The simulation of multi-layer rough surfaces is an indispensable step in passive radiation imaging, to which little attention has been paid so far. Based on the existing model of brightness temperature tracing described in our recent works, diffused transmission of the bottom layer is taken into account in the improved model which is presented in this paper. Then, a method called multi-layer brightness temperature tracing method (MBTT) is established to obtain the brightness temperature of a rough surface, and the applied range of the simulation in passive millimeter-wave imaging (PMMW) is extended.
Citation
Chuan Yin, Ming Zhang, and Yaming Bo, "Simulation of Multi-Layer Rough Surfaces Media in the Passive Millimeter-Wave Imaging," Progress In Electromagnetics Research M, Vol. 51, 51-62, 2016.
doi:10.2528/PIERM16070302
References

1. Liu, G. D. and Y. R. Zhang, "Three-dimensional microwave-induced thermo-acoustic imaging for breast cancer detection," Acta Phys. Sin., Vol. 60, No. 7, 074303, 2011.

2. Ji, W. J. and C. M. Tong, "Research on electromagnetic scattering computation and synthetic aperture radar imaging of ship located on two-dimensional ocean surface," Acta Phys. Sin., Vol. 61, 160301, 2012.

3. Zhang, X., H. Tortel, S. Ruy, et al. "Microwave imaging of soil water diffusion using the linear sampling method," IEEE Geoscience & Remote Sensing Letters, Vol. 8, No. 3, 421-425, 2011.
doi:10.1109/LGRS.2010.2082490

4. Ruf, C. S., C. T. Swift, A. B. Tanner, et al. "Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth," IEEE Transactions on Geoscience & Remote Sensing, Vol. 26, No. 5, 597-611, 1988.
doi:10.1109/36.7685

5. Yujiri, L., M. Shoucri, and P. Moffa, "Passive millimeter wave imaging," IEEE Microwave Magazine, Vol. 4, 39-50, 2003.
doi:10.1109/MMW.2003.1237476

6. Salmon, N. A., R. Appleby, and S. Price, "Scene simulation of passive millimeter-wave images of plastic and metal objects," Proc. SPIE, 397-401, 2002.
doi:10.1117/12.477464

7. Salmon, N. A., "Polarimetric scene simulation in millimeter-wave radiometric imaging," Proc. SPIE, 260-269, 2004.
doi:10.1117/12.562206

8. Salmon, N. A., "Polarimetric passive millimeter-wave imaging scene simulation including multiple reflections of subjects and their backgrounds," Proc. SPIE, 354-358, 2005.

9. Zhang, C. and J. Wu, "Near-field 3D scene simulation for passive microwave imaging," Proc. SPIE, Vol. 6419, 1-11, 2006.

10. Zhang, C. and J. Wu, "Image simulation for ground objects microwave radiation," Journal of Electronics & Information Technology, Vol. 29, 2725-2728, 2007.

11. Fetterman, M. R., J. Dougherty, W. L. Kiser, and Jr., "Scene simulation of mm-wave images," IEEE 2007 AP-S Int. Symposium, 1493-1496, 2007.

12. Fetterman, M. R., J. Grata, and G. Jubic, "Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications," Optics Express, Vol. 25, 20503-20515, 2008.
doi:10.1364/OE.16.020503

13. Salmon, N. A., "Scattering in polarimetric millimetre-wave imaging scene simulation," Proc. SPIE, Vol. 6211, 71-78, 2006.

14. Fawwaz, T., R. Ulaby, K, Moore, and K. F. Adrian, Microwave Remote Sensing Active and Passive, 1982.

15. Zhang, J. R., D. H. Zhang, L. W. Wang, Y. Z. Zhao, W. Sheng, and W. Guo, "In situ measurement of typical objects’ permittivities in microwave remote sensing," Journal of Electronics, Vol. 4, 566-9, 1997.

16. Zhang, J. R., "The microwave dielectric constant of canopy and soil," Remote Sensing Technology and Application, Vol. 10, 40-50, 1995.

17. Sun, Z. W., P. S. Yu, and L. Xia, "Progress in study of snow parameter inversion by passive microwave remote sensing," Remote Sensing for Land & Resources, Vol. 27, No. 1, 9-15, 2015.

18. Jiang, L. M., J. C. Shi, and L. X. Zhang, "Comparison of dry snow emission model with experimental measurements," Journal of Remote Sensing, Vol. 10, No. 4, 515-522, 2006.

19. Liebe, H. J., G. A. Hufford, and M. G. Cotton, "Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz," Atmospheric Propagation Effects Through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation, Vol. 11, SEE N94-30495, 08-32, 1993.

20. ITU Recommendation "Attenuation by atmospheric gases,", 676-5, 2001.

21. ITU Recommendation "Attenuation due to clouds and fog,", 840-3, 1999.

22. ITU Recommendation "Reference Standard Atmospheres,", 835-3, 1999.