Vol. 53
Latest Volume
All Volumes
PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-02
A Visibility-Domain Reconstruction Technique for Optical Interferometry Imaging
By
Progress In Electromagnetics Research M, Vol. 53, 215-227, 2017
Abstract
A visibility-domain processing for optical interferometric imaging (VP-OII) method is proposed to model the visibility distribution of an image, and a phase retrieval technique is proposed to acquire additional visibility data from the powerspectrum and closure-phase data. This method requires only a few tunable parameters, and can be easily extended to include more data acquired from different instruments. By simulating the reconstruction of an LkHα 101 image, the proposed method proves a few hundreds times faster and is more resilient to noises than the conventional MIRA, and the image quality is comparable to noise that of conventional MIRA.
Citation
Mu-Min Chiou Jean-Fu Kiang , "A Visibility-Domain Reconstruction Technique for Optical Interferometry Imaging," Progress In Electromagnetics Research M, Vol. 53, 215-227, 2017.
doi:10.2528/PIERM16071103
http://www.jpier.org/PIERM/pier.php?paper=16071103
References

1. Thureau, N. D., J. D. Monnier, W. A. Traub, R. Millan-Gabet, E. Pedretti, J. P. Berger, M. R. Garcia, F. P. Schloerb, and A. K. Tannirkulam, "Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry," Monthly Notices Roy. Astron. Soc., Vol. 398, No. 3, 1309-1316, 2009.
doi:10.1111/j.1365-2966.2009.14949.x

2. Renard, S., E. Thiebaut, and F. Malbet, "Image reconstruction in optical interferometry: Benchmarking the regularization," Astron. Astrophys., Vol. 553, A64, Sep. 2011.
doi:10.1051/0004-6361/201016263

3. Thiébaut, E. and J. F. Giovannelli, "Image reconstruction in optical interferometry using a general framework to formally describe and compare different methods," IEEE Signal Process. Mag., Vol. 27, No. 1, 97-109, Jan. 2010.
doi:10.1109/MSP.2009.934870

4. Hofmann, K. H. and G. Weigelt, "Iterative image reconstruction from the bisepctrum," Astron. Astrophys., Vol. 278, 328-339, 1993.

5. Meimon, S. C., L. M. Mugnier, and G. Le Besnerais, "Reconstruction method for weak-phase optical interferometry," Opt. Lett., Vol. 30, No. 14, 1809-1811, 2005.
doi:10.1364/OL.30.001809

6. Thiébaut, E., "MIRA: An effective imaging algorithm for optical interferometry," SPIE Astron. Telescopes Instru., Vol. 7013, 70131I1-12, 2008.

7. Hofmann, K. H., G. Weigelt, and D. Schertl, "An image reconstruction method (IRBis) for optical/infrared interferometry," Astron. Astrophys., Vol. 565, A48, 2014.
doi:10.1051/0004-6361/201323234

8. Ireland, M. J., J. D. Monnier, and N. Thureau, "Monte-Carlo imaging for optical interferometry," Proc. SPIE, 6268, 62681T, 2006.

9. Le Besnerais, G., S. Lacour, L. M. Mugnier, E. Thiebaut, G. Perrin, and S. Meimon, "Advanced imaging methods for long-baseline optical interferometry," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 767-780, Oct. 2008.
doi:10.1109/JSTSP.2008.2005353

10. Le Bouquin, J. B., et al., "PIONIER: A 4-telescope visitor instrument at VLTI," Astron. Astrophys, Vol. 535, A67, 2011.
doi:10.1051/0004-6361/201117586

11. Mourard, D., et al., "VEGA: Visible spEctroGraph and polArimeter for the CHARA array: Principle and performance," Astron. Astrophys., Vol. 508, 1073-1083, 2009.
doi:10.1051/0004-6361/200913016

12. Gillessen, S., F. Eisenhauer, and G. Perrin, "GRAVITY: A four-telescope beam combiner instrument for the VLTI," SPIE Astron. Telescopes Instru., Vol. 7734, 77340Y-20, 2010.

13. Schutz, A., A. Ferrari, D. Mary, F. Soulez, E. Thiébaut, and M. Vannier, "PAINTER: A spatiospectral image reconstruction algorithm for optical interferometry," J. Opt. Soc. Am. A, Vol. 31, No. 11, 2334-2345, 2014.
doi:10.1364/JOSAA.31.002334

14. Thiébaut, E., F. Soulez, and L. Denis, "Exploiting spatial sparsity for multiwavelength imaging in optical interferometry," J. Opt. Soc. Am. A, Vol. 30, No. 2, 160-170, Feb. 2013.
doi:10.1364/JOSAA.30.000160

15. Auria, A., R. Carrillo, J. P. Thiran, and Y. Wiaux, "Tensor optimization for optical-interferometric imaging," Monthly Notices Roy. Astron. Soc., Vol. 437, No. 3, 2083-2091, 2014.
doi:10.1093/mnras/stt1994

16. Jankov, S., "Astronomical optical interferometry, I: Methods and instrumentation," Serbian Astronom. J., No. 181, 1-17, 2010.
doi:10.2298/SAJ1081001J

17. Lawson, P. R., et al., "The 2004 optical/IR interferometry imaging beauty contest," Proc. SPIE, Vol. 5491, 886-899, 2004.
doi:10.1117/12.550710

18. Armstrong, J. T., et al., "The Navy Precision Optical Interferometer (NPOI): An update," J. Astron. Instru., Vol. 2, No. 2, 1340002, 2013.
doi:10.1142/S2251171713400023

19. Le Bouquin, J. B., S. Lacour, S. Renard, E. Thi´ebaut, A. Merand, and T. Verhoelst, "Pre-maximum spectro-imaging of the Mira star T Lep with AMBER/VLTI," Astron. Astrophys., Vol. 496, L1, Apr. 2009.
doi:10.1051/0004-6361/200811579

20. Bourguignon, S., D. Mary, and E. Slezak, "Restoration of astrophysical spectra with sparsity constraints: Models and algorithms," IEEE J. Select. Topics Signal Process., Vol. 5, No. 5, 1002-1013, Sep. 2011.
doi:10.1109/JSTSP.2011.2147278

21. Baron, F., et al., "The 2012 interferometric imaging beauty contest," Proc. SPIE, Vol. 8445, 1E1-14, 2012.

22. Pauls, T. A., J. S. Young, W. D. Cotton, and J. D. Monnier, "A data exchange standard for optical (visible/IR) interferometry," Pub. Astron. Soc. Pacific, Vol. 117, No. 837, 1255-1262, Nov. 2005.
doi:10.1086/444523