Vol. 50
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-29
Thermal Distribution Based Investigations on Electromagnetic Interactions with the Human Body for Wearable Wireless Devices
By
Progress In Electromagnetics Research M, Vol. 50, 141-150, 2016
Abstract
With increasing interest in the usage of wearable wireless communication technologies at 1.8 & 2.4 GHz and 5 & 9 GHz band of frequencies, investigations on the human body interaction with these devices are becoming important. This paper provides a microstrip-based multi-band monopole antenna for body Wearable Wireless Devices (WWD), covering licensed and license-free wireless technologies at UHF/UWB when placed on human body. Five parts of the body were considered to evaluate the electromagnetic (EM) effects on the body. Specific Absorption Rate (SAR) values were found to range from 0.09-0.25 W/kg by using numerical modelling. The thermal effects were investigated experimentally using infrared thermography, and temperature changes not exceeding 1˚C were noticed. Analyses of numerical, simulated and experimental results show that infrared thermography, a temperature-based technique, can be used to evaluate the compliance of WWDs with safety exposure limits for various wireless applications.
Citation
Karthik Varshini, and Thipparaju Rama Rao, "Thermal Distribution Based Investigations on Electromagnetic Interactions with the Human Body for Wearable Wireless Devices," Progress In Electromagnetics Research M, Vol. 50, 141-150, 2016.
doi:10.2528/PIERM16071703
References

1. Foster, K. R., "Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems," IEEE Transactions on Plasma Science, Vol. 28, No. 1, 15-23, 2000.
doi:10.1109/27.842819

2. Adair, E. R. and R. C. Petersen, "Biological effects of radiofrequency/microwave radiation," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 953-962, 2002.
doi:10.1109/22.989978

3. Chou, C.-K. and J. A. D’Andrea, "Reviews of effects of RF fields on various aspects of human health: Introduction," Bioelectromagnetics, Vol. 24, No. S6, S5-S6, 2003.
doi:10.1002/bem.10178

4. Nikolaeva, E. Y., et al. "Analysis of thermal effects in human exposed to EM radiation (2D case)," Proceedings of the 9th International Seminar/Workshop on IEEE Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, DIPED 2004.

5. Ibrahiem, A., et al. "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501

6. Soontornpipit, P., "Effects of radiation and SAR from wireless implanted medical devices on the human body," Journal of the Medical Association of Thailand, Vol. 95, S189-97, 2012.

7. Zhadobov, M., N. Chahat, R. Sauleau, C. Le Quement, and Y. Le Drean, "Millimeter-wave interactions with the human body: state of knowledge and recent advances," International Journal of Microwave and Wireless Technologies, Vol. 3, No. 2, 237-247, 2011.
doi:10.1017/S1759078711000122

8. Tuovinen, T., et al. "On the evaluation of biological effects of wearable antennas on contact with dispersive medium in terms of SAR and bio-heat by using FIT technique," International Symposium on IEEE Medical Information and Communication Technology (ISMICT), 49-153, Mar. 6-8, 2013.

9. Thotahewa, K., J.-M. Redouté, and M. R. Yuce, "SAR, SA, and temperature variation in the human head caused by IR-UWB implants operating at 4 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 5, 2161-2169, 2013.
doi:10.1109/TMTT.2013.2250515

10. Fadhel, B. S. and M. R. Kamarudin, "EM wave effects upon the human body using UWB antennas," Journal of Info and Electronics Engineering, Vol. 4, No. 2, 158, 2014.

11. Francesc, S., "Radiation effects of wearable antenna in human body tissues [dissertation],", University of Colorado Springs, 2014.

12. Wu, T., T. S. Rappaport, and C. M. Collin, "Safe for generations to come: Considerations of safety for millimeter waves in wireless communications," IEEE Microwave Magazine, Vol. 16, No. 2, 65-84, 2015.
doi:10.1109/MMM.2014.2377587

13. Siauve, N., R. Scorretti, N. Burais, L. Nicolas, and A. Nicolas, "Electromagnetic fields and human body: A new challenge for the electromagnetic field computation," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 22, No. 3, 457-469, 2003.
doi:10.1108/03321640310474868

14. Gabrie, C. G. and S. Corthout, "The dielectric properties of biological tissues: I. Literature Survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

15. Anguera, J., A. Andújar, C. Picher, L. González, C. Puente, and S. Kahng, "Behavior of several antenna topologies near the human head at the 2.4–2.5 GHz band," Microwave and Optical Technology Letters, Vol. 54, No. 8, 1911-1916, Aug. 2012.
doi:10.1002/mop.26970

16. Hernandez, S. and A. David, High Frequency Electromagnetic Dosimetry, Artech House Inc., 2009.

17. Tuovinen, T., M. Berg, K. Y. Yazdandoost, and J. Iinatti, "Ultra wideband loop antenna on contact with human body tissues," IET Microwave and Antennas Propagation, Vol. 7, No. 7, 588-596, 2013.
doi:10.1049/iet-map.2012.0082

18. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601

19. Italian National Research Council, Institute for Applied Physics, homepage on Dielectric properties of body tissues, [Online], Available: http://niremf.ifac.cnr.it.

20. Ramesh, G., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

21. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Wireless Communications, 2nd Ed., Artech House, 2012.

22. ICNIRP Guidelines for limiting to time varying electric, magnetic, and electromagnetic fields (upto 300 GHz), Health Physics, Vol. 74, No. 4, 494-522, 1998.

23. IEEE Standard for Safety Levels with Respect to Human Exposure to the Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Std. C95.1. 2005.

24. Samaras, T., A. Christ, A. Klingenböck, and N. Kuster, "Worst case temperature rise in a one-dimensional tissue model exposed to radiofrequency radiation," IEEE Trans. on Biomedical Engineering, Vol. 54, No. 3, 492-496, 2007.
doi:10.1109/TBME.2006.890498

25. Kritikos, H. N. and H. P. Schwan, "Potential temperature rise induced by electromagnetic field in brain tissues," IEEE Trans. on Biomedical Engineering, Vol. 26, No. 1, 29-34, 1979.
doi:10.1109/TBME.1979.326493