Vol. 52
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-07
A Novel Resistance Network Node Potential Measurement Method and Application in Grounding Grids Corrosion Diagnosis
By
Progress In Electromagnetics Research M, Vol. 52, 9-20, 2016
Abstract
In this paper, a novel resistance network node potential measurement technique based on 16-channel cycle method is presented, and a grounding grids corrosion diagnosis measurement system with 16 channels is built from this method. Through this measurement system, 1,680 valid potential data and 1,560 effective branch voltage data can be collected in one measurement by only 16 accessible node downleads on the grounding grid. The stability error of the excitation current source is less than 0.15%, and the error of the applicable acquisition data is about 1% according to system data tests. Built on the measurements, an underdetermined sensitivity equation for solving the increasing multiple of branch resistance is put in place to determine the corrosion status of grounding grids. The experimental results show that the plenty of data is necessary when solving the underdetermined equation and also show that the system is under a high stability, high accuracy, and can comply with the requirements of corrosion diagnosis for grounding grids.
Citation
Kai Liu, Fan Yang, Xiaoyu Wang, Bing Gao, Xiaokuo Kou, Manling Dong, and Ammad Jadoon, "A Novel Resistance Network Node Potential Measurement Method and Application in Grounding Grids Corrosion Diagnosis," Progress In Electromagnetics Research M, Vol. 52, 9-20, 2016.
doi:10.2528/PIERM16082502
References

1. Dimopoulos, A., H. Griffiths, N. Harid, et al. "Proposal for probabilistic risk assessment in grounding systems and its application to transmission substations," IEEE Trans. Power Del., Vol. 27, No. 4, 2219-2226, Oct. 2012.
doi:10.1109/TPWRD.2012.2204440

2. IEEE Guide for Safety in AC Substation Grounding, IEEE Std 80-2000, 2000.

3. Long, X., M. Dong, W. Xu, et al. "Online monitoring of substation grounding grid conditions using touch and step voltage sensors," IEEE Transactions on Smart Grid, Vol. 3, No. 2, 761-769, Jun. 2012.
doi:10.1109/TSG.2011.2175456

4. Sverak, J. G., W. Wang, Y. Gervais, X. D. Do, and D. Mukedkar, "A probabilistic method for the design of power grounding systems," IEEE Trans. Power Del., Vol. 7, No. 3, 1196-1206, Jul. 1992.
doi:10.1109/61.141831

5. Sverak, J. G., W. K. Dick, T. H. Dodds, and R. H. Heppe, "Safe substation grounding-part I," IEEE Transactions on Power Apparatus and Systems, Vol. 100, 4281-4290, Sep. 1981.
doi:10.1109/TPAS.1981.316934

6. Celli, G., E. Ghiani, and F. Pilo, "Behaviour of grounding systems: A quasi-static EMTP model and its validation," Electric Power Systems Research, Vol. 85, 24-29, Apr. 2012.
doi:10.1016/j.epsr.2011.07.004

7. Heimbach, M. and L. D. Grcev, "Grounding system analysis in transients programs applying electromagnetic field approach," IEEE Trans. Power Del., Vol. 12, No. 1, 186-193, Jan. 1997.
doi:10.1109/61.568240

8. Dommel, H. W., "Digital computer solution of electromagnetic transient in single and multiple networks," IEEE Trans. Power App. Syst., Vol. 88, No. 4, 388-399, Apr. 1969.
doi:10.1109/TPAS.1969.292459

9. Otero, A. F., J. Cidras, and J. L. del Alamo, "Frequency-dependent grounding system calculation by means of a conventional nodal analysis technique," IEEE Trans. Power Del., Vol. 14, No. 3, 873-878, Jul. 1999.
doi:10.1109/61.772327

10. Lawson, V. R., "Problems and detection of line anchor and substation ground grid corrosion," IEEE Transactions on Industry Applications, Vol. 24, No. 1, 25-32, Jan.-Feb. 1988.
doi:10.1109/28.87245

11. Patel, S., "A complete field analysis of substation ground grid by applying continuous low voltage fault," IEEE Trans. Power App. Syst., Vol. 104, No. 8, 2238-2243, Aug. 1985.
doi:10.1109/TPAS.1985.318804

12. Liu, J., Y. Ni, S. Wang, et al. "Grounding grids corrosion diagnosis using a block dividing approach," High Voltage Engineering, Vol. 37, 1194-1202, May 2011 (in Chinese).

13. Ni, Y. F., J. Liu, S. Q. Wang, et al. "Splitting method for grounding grids corrosion diagnosis using a block dividing approach," High Voltage Engineering, Vol. 37, 2250-2260, Sep. 2011 (in Chinese).

14. Dawalibi, F., "Electromagnetic fields generated by overhead and buried short conductors part 2 - ground networks," IEEE Trans. Power Delivery, Vol. 1, 112-119, Oct. 1986.

15. Yan, M., G. G. Karady, and S. Kucuksari, "Testing continuity of grounding grid using the AC current injection method," IEEE Power and Energy Society General Meeting, 1-6, 2010.

16. He, W., Q. Shi, F. Yang, et al. "Computation method of magnetic field inverse problem on grounding grids fault diagnosis," Journal of Chongqing University, Vol. 35, 80-85, Sep. 2012 (in Chinese).

17. Huang, L. and D. G. Kasten, "Modeling of ground grid and metallic structure currents in high voltage a.c. substations for the computation of electromagnetic fields," Electric Power Systems Research, Vol. 59, 31-37, Mar. 2001.

18. Zhang, B., Z. Zhao, X. Cui, et al. "Diagnosis of breaks in substation’s grounding grid by using the electromagnetic method," IEEE Trans. Magn., Vol. 38, 473-476, Mar. 2002.
doi:10.1109/20.996125

19. Liu, Y., X. Cui, and Z. Zhao, "Design and application of exciting power for substation grounding grids tests system based on impedance transformation technology," Proceedings of the CSEE, Vol. 28, 18-23, Oct. 2008 (in Chinese).

20. Cheng, H., Y. Yang, J. Liu, et al. "Grounding grids corrosion diagnosis automation test system and its key techniques," High Voltage Engineering, Vol. 35, 2989-2994, Dec. 2009 (in Chinese).

21. Texas Instruments Inc. ADS1241E datasheet, , , [Online], Available: http://www.ti.com/product/ads1241.

22. Kubica, B. J., "Interval methods for solving underdetermined nonlinear equations systems," Reliable Computing, Vol. 15, No. 3, 207-217, Jul. 2011.

23. Zeng, J., S. Lin, and Z. Xu, "Sparse solution of underdetermined linear equations via adaptively iterative thresholding," Signal Processing, Vol. 97, 152-161, Apr. 2014.
doi:10.1016/j.sigpro.2013.10.031