Vol. 54
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-17
A Novel Field-Line-Circuit Hybrid Algorithm for Transient Responses Prediction of Transmission Lines Based on FDTD Method
By
Progress In Electromagnetics Research M, Vol. 54, 163-173, 2017
Abstract
A novel field-line-circuit hybrid algorithm based on finite difference time domain (FDTD) method is devoted to predicting the electromagnetic responses of transmission line with multi-ports network in a shelter in this paper. The full wave FDTD method, transmission line FDTD method, and the modified nodal analysis (MNA) are combined to be compatible with the multi-level electromagnetic (EM) coupling progress of the electromagnetic interference (EMI) problem. The proposed method divides the EM couplings among the spatial EM fields, antennas, transmission line networks, and terminal circuits in some typical electronic systems into different levels with appreciate simulation techniques used. The accuracy of the hybrid method is verified by comparing the terminal transient voltage responses of transmission lines with the results obtained by PSPICE, and good agreements are achieved. Numerical calculations are further performed to show the terminal coupling voltages and currents, and the effects of incident directions and polarizations of the illuminated electromagnetic pulse (EMP) are both taken into account.
Citation
Xiao Han Jian Wang Yin-Shui Xia , "A Novel Field-Line-Circuit Hybrid Algorithm for Transient Responses Prediction of Transmission Lines Based on FDTD Method," Progress In Electromagnetics Research M, Vol. 54, 163-173, 2017.
doi:10.2528/PIERM16082801
http://www.jpier.org/PIERM/pier.php?paper=16082801
References

1. Li, P., Y. Shi, L. J. Jiang, and H. Bağcı, "Transient analysis of lumped circuit networks-loaded thin wires by DGTD method," IEEE Trans. Antennas and Propagation, Vol. 64, No. 6, 2358-2369, 2016.
doi:10.1109/TAP.2016.2543803

2. Carter, N. J., "The past, present and future challenges of aircraft EMC," IEEE Electromagnetic Compatibility Magazine, Vol. 1, No. 1, 75-78, 2012.
doi:10.1109/MEMC.2012.6244953

3. Li, P., L. J. Jiang, and H. Bagcı, "Cosimulation of electromagnetics-circuit systems exploiting DGTD and MNA," IEEE Trans. Components, Packaging and Manufacturing Technology, Vol. 4, No. 6, 1052-1061, 2014.
doi:10.1109/TCPMT.2014.2316137

4. Faghihi, F. and H. Heydari, "Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects," Progress In Electromagnetics Research, Vol. 95, No. 4, 87-102, 2013.

5. Li, P., L. J. Jiang, and H. Bagcı, "Transient analysis of dispersive power-ground plate pairs with arbitrarily shaped antipads by the DGTD method with wave port excitation," IEEE Trans. Electromagnetic Compatibility, Vol. 59, No. 99, 1-12, 2016.
doi:10.1109/TEMC.2016.2579651

6. Valente, W., A. Raizer, and L. Pichon, "The use of equivalent model and numerical simulation for EMC analysis in hospital environments," IEEE Trans. Electromagnetic Compatibility, Vol. 58, No. 4, 1-6, 2016.
doi:10.1109/TEMC.2016.2552170

7. Baum, C. E., "Electromagnetic topology for the analysis and design of complex electromagnetic systems," Fast Electrical and Optical Measurements, 467-547, Springer, Netherlands, 1986.

8. Bağci, H., A. E. Yilmaz, and E. Michielssen, "An FFT-accelerated time-domain multi-conductor transmission line simulator," IEEE Trans. Electromagnetic Compatibility, Vol. 52, No. 1, 199-214, 2010.
doi:10.1109/TEMC.2009.2036602

9. Bağci, H., A. E. Yılmaz, J. M. Jin, and E. Michielssen, "Fast and rigorous analysis of EMC/EMI phenomena on electrically large and complex cable-loaded structure," IEEE Trans. Electromagnetic Compatibility, Vol. 49, No. 2, 361-381, 2007.
doi:10.1109/TEMC.2007.897159

10. Wang, W., P. G. Liu, and Y. J. Qin, "An unconditional stable 1D-FDTD method for modeling transmission lines based on precise split-step scheme," Progress In Electromagnetics Research, Vol. 135, No. 1, 245-260, 2013.

11. Tatematsu, A., "A technique for representing coaxial cables for FDTD-based surge simulations," IEEE Trans. Electromagnetic Compatibility, Vol. 57, No. 3, 488-495, 2015.
doi:10.1109/TEMC.2014.2387059

12. Boutar, A., A. Reineix, C. Guiffaut, and G. Andrieu, "An efficient analytical method for electromagnetic field to transmission line coupling into a rectangular enclosure excited by an internal source," IEEE Trans. Electromagnetic Compatibility, Vol. 57, No. 3, 565-573, 2015.
doi:10.1109/TEMC.2014.2386913

13. Wang, J., Y. S. Xia, and L. Y. Wang, "Electromagnetic responses of a metallic conical frustum cabin with one coaxial feeding monopole antenna," Int. Journal of Applied Electromagn. & Mechan., Vol. 47, No. 3, 765-776, 2015.

14. Wang, J., W. Y. Yin, and J. P. Fang, "Transient responses of coaxial cables in an electrically large cabin with slots and windows illuminated by an electromagnetic pulse," Progress In Electromagnetics Research, Vol. 106, No. 9, 1-16, 2010.
doi:10.2528/PIER10060708

15. Mao, Y., B. Chen, H. Q. Liu, J. L. Xia, and J. Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, No. 14, 153-170, 2012.
doi:10.2528/PIER12032306

16. Ye, Z., C. Liao, and X. Xiong, "The research and application of a novel time domain hybrid method for EMI analysis of lumped circuits in a shielded device," IEEE Trans. Electromagnetic Compatibility, Vol. 58, No. 4, 964-970, 2016.
doi:10.1109/TEMC.2016.2551982

17. Liu, Q. F., W. Y. Yin, M. Tang, P. Liu, J. F. Mao, and Q. H. Liu, "Time-domain investigation on cable-induced transient coupling into metallic enclosures," IEEE Trans. Electromagnetic Compatibility, Vol. 51, No. 4, 953-962, 2009.
doi:10.1109/TEMC.2009.2029347

18. Hyun, S. Y., S. Y. Kim, and Y. S. Kim, "An equivalent feed model for the FDTD analysis of antennas driven through a ground plane by coaxial lines," IEEE Trans. Antennas and Propagation, Vol. 57, No. 1, 161-167, 2009.
doi:10.1109/TAP.2008.2009650

19. Vlach, J. and K. Singhal, Computer Methods for Circuit Analysis and Design, Springer Science & Business Media, 1983.

20. Paul, C. R., Analysis of Multi Conductor Transmission Lines, John Wiley & Sons, 2008.