Vol. 54
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-02
Real-Coefficient FGG-FG-FFT for the Combined Field Integral Equation
By
Progress In Electromagnetics Research M, Vol. 54, 19-27, 2017
Abstract
This article proposes a new scheme of real-coefficient fitting both Green's function and its gradient with Fast Fourier Transform (RFGG-FG-FFT) for combined field integral equation (CFIE) to compute the conducting object's electromagnetic scattering, which improves original fitting both Green's function and its gradient with Fast Fourier Transform (FGG-FG-FFT) on efficiency. Firstly, based on Moore-Penrose generalized inverse, an equivalent form of fitting matrix equation is obtained containing the property of Green's function's integral proved by addition theorem. Based on this property, with truncated Green's function new fitting technique is presented for computing fitting coefficients with real value expression, which is different from complex value expression by the original fitting technique in FGG-FG-FFT. Numerical analysis of error shows that new fitting technique has the same accuracy, but only one half of sparse matrices' storage compared to the original fitting technique in FGG-FG-FFT. Finally, the new scheme combining FGG-FG-FFT and new fitting technique is constructed. Some examples show that the new scheme is accurate and effective compared to FGG-FG-FFT and p-FFT.
Citation
Hua-Long Sun Chuang Ming Tong Peng Peng Gao Xiang Zou Gui Long Tian , "Real-Coefficient FGG-FG-FFT for the Combined Field Integral Equation," Progress In Electromagnetics Research M, Vol. 54, 19-27, 2017.
doi:10.2528/PIERM16112202
http://www.jpier.org/PIERM/pier.php?paper=16112202
References

1. Harrington, R. F., Field Computation by Moment Methods, Oxford University Press Oxford, England, 1996.

2. Bleszynski, M., E. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, Sep.-Oct. 1996.
doi:10.1029/96RS02504

3. Nie, X.-C., J. L.-W. Li, and N. Yuan, "Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 574-577, 2002.
doi:10.1163/156939302X00697

4. Yang, K. and A. E. Yilmaz, "Comparison of pre-corrected FFT/adaptive integral method matching schemes," Microw. and Opt. Tech. Lett., Vol. 53, No. 6, 1368-1372, Jun. 2011.
doi:10.1002/mop.26006

5. Mo, S. S. and J.-F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Trans. Magn., Vol. 41, No. 5, 1476-1479, May 2005.
doi:10.1109/TMAG.2005.844564

6. Xie, J. Y., H. X. Zhou, W. Hong, W. D. Li, and G. Hua, "A highly accurate FGG-FG-FFT for the combined field integral equation," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4641-4652, Sep. 2013.
doi:10.1109/TAP.2013.2267652

7. Xie, J. Y., H. X. Zhou, X. Mu, G. Hua, W. D. Li, and W. Hong, "p-FFT and FG-FFT with real coefficients algorithm for the EFIE," J. Southeast Univ., Vol. 30, No. 3, 267-270, Sep. 2014.

8. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

9. Rao, S. M., D. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

10. McLaren, A. D., "Optimal numerical integration on a sphere," Math. Comp., Vol. 17, No. 84, 361-383, Oct. 1963.
doi:10.1090/S0025-5718-1963-0159418-2

11. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

12. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, New York, 1941.

13. Frigo, M. and S. Johnson, FFTW Manual, [Online]. Available: http://www.fftw.org/.

14. Xie, J. Y., H. X. Zhou, W. D. Li, and W. Hong, "IE-FFT for the combined field integral equation applied to electrically large objects," Microw. and Opt. Tech. Lett., Vol. 54, No. 4, 891-896, Apr. 2012.
doi:10.1002/mop.26697