Vol. 54
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-07
Cross Section Equivalence Between Photons and Non-Relativistic Massive Particles for Targets with Complex Geometries
By
Progress In Electromagnetics Research M, Vol. 54, 37-46, 2017
Abstract
The quantum radar cross section (QRCS) is a concept that gives information on the amount of returns (or scattered energy towards the detector) one can expect from a particular target when being illuminated with a small number of photons. This cross section is highly dependent on the target's geometry, as well as the illumination angle and the scattering angle from the target. The expression for the quantum radar cross section equation has been derived in the context of photon scattering. In this paper, it will be shown that an equivalent cross section expression, including the alternate form written in terms of Fourier transforms, can be derived using quantum scattering theory applied to non-relativistic, massive particles. Both single particle and multiple particle illumination are considered. Although this approach is formulated based upon massive, non-relativistic particle scattering, its equivalence to the expression based upon photon scattering provide many valuable insights of representing and interpreting these equations in the context of quantum radar. This includes an improved algorithm to simulate the QRCS response of an object illuminated with any number of photons desired.
Citation
Matthew J. Brandsema Ram M. Narayanan Marco Lanzagorta , "Cross Section Equivalence Between Photons and Non-Relativistic Massive Particles for Targets with Complex Geometries," Progress In Electromagnetics Research M, Vol. 54, 37-46, 2017.
doi:10.2528/PIERM16112308
http://www.jpier.org/PIERM/pier.php?paper=16112308
References

1. Lanzagorta, M., "Low brightness quantum radar," Proceedings of the SPIE Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI, 946113, Baltimore, MD, 2015.

2. Lanzagorta, M., Quantum Radar, Morgan & Claypool, San Rafael, CA, 2012.

3. Lanzagorta, M., "Quantum radar cross sections," Proceedings of the SPIE Conference on Quantum Optics, 77270K, Brussels, Belgium, 2010.

4. Lin, Y., L. Guo, and K. Cai, "An efficient algorithm for the calculation of quantum radar cross section of flat objects," PIERS Proceedings, 39-43, Guangzhou, China, August 25-28, 2014.

5. Kang, L., H.-T. Xiao, and H.-Q. Fan, "Analysis and simulation of quantum radar cross section," Chin. Phys. Lett., Vol. 31, 034202, 2014.
doi:10.1088/0256-307X/31/6/068502

6. Barzanjeh, S., S. Guha, C. Weedbrook, D. Vitali, J. Shapiro, and S. Pirandola, "Microwave quantum illumination," Phys. Rev. Lett., Vol. 114, 080503, 2015.
doi:10.1103/PhysRevLett.114.080503

7. Jiang, K., H. Lee, C. C. Gerry, and J. P. Dowling, "Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit," J. Appl. Phys., Vol. 114, 193102, 2013.
doi:10.1063/1.4829016

8. Didomenico, L. D., H. Lee, P. Kok, and J. P. Dowling, "Quantum interferometric sensors," Proceedings of SPIE Conference on Quantum Sensing and Nanophotonic Devices, 169-176, San Jose, CA, 2004.

9. Brandsema, M. J., R. M. Narayanan, and M. Lanzagorta, "Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets," Quantum Information Science, Vol. 16, 32, Springer, 2017.

10. Brandsema, M. J., R. M. Narayanan, and M. Lanzagorta, "Analytical formulation of the quantum electromagnetic cross section," Proceedings of the SPIE Conference on Radar Sensor Technology XX, 98291H, Baltimore, MD, 2016.

11. Sakurai, J. and S. Tuan, Modern Quantum Mechanics, Addison-Wesley, Reading, MA, 1994.

12. Liang, L., R. Rinaldi, and H. Schober, Neutron Applications in Earth, Energy and Environmental Sciences, Springer, New York, NY, 2009.
doi:10.1007/978-0-387-09416-8

13. Feynman, R. P. and A. R. Hibbs, Quantum Mechanics and Integrals, McGraw-Hill, New York, NY, 1965.

14. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., Wiley, New York, NY, 2012.

15. Berestetskii, V. B., E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd Ed., Pergamon Press Ltd., Oxford, UK, 1982.

16. Thomas, G. and M. J. Goringe, Transmission Electron Microscopy of Materials, John Wiley, New York, NY, 1979.