Vol. 56
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-05-02
Ameliorating the Performance of a Planar Inverted F Antenna by Minimization of Losses
By
Progress In Electromagnetics Research M, Vol. 56, 121-131, 2017
Abstract
This paper aims at designing a wideband planar inverted F antenna (PIFA). The design of a PIFA begins with an elementary step such as the etching of antenna element pattern in a metal trace. After the etching adherence is developed by incorporating bonding between it and a printed circuit board which is primarily an insulating dielectric substrate. A ground plane is developed by a prolonging metallic layer which is adhered to the opposite side of the substrate. The simulation is done using ANSYS HFSS full wave 3D simulation software. The proposed PIFA is very compact and also provides a gain of 2.86 dB. As a consequence of the exemplary feature like an omnidirectional radiation pattern, there is an exceptional improvement in coverage. Moreover, the frequency bands covered by the PIFA are for applications including USPCS, UMTS, ISM/Bluetooth and WLAN at (1.85 to 1.99) GHz, (1.90 to 2.20) GHz, (2.4 to 2.485) GHz and (5.1 to 5.90) GHz, respectively.
Citation
Amandeep Batth Hardeep Singh Saini Abhishek Thakur Rajesh Kumar , "Ameliorating the Performance of a Planar Inverted F Antenna by Minimization of Losses," Progress In Electromagnetics Research M, Vol. 56, 121-131, 2017.
doi:10.2528/PIERM16112903
http://www.jpier.org/PIERM/pier.php?paper=16112903
References

1. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002.
doi:10.1002/0471221112

2. Anguera, J., A. Andújar, M. C. Huynh, C. Orlenius, C. Picher, and C. Puente, "Advances in antenna technology for wireless handheld devices," International Journal on Antennas and Propagation, Vol. 2013, Article ID 838364, 2013.

3. Ebrahimi, E., J. Kelly, and P. S. Hall, "A reconfigurable narrowband antenna integrated with wideband monopole for cognitive radio applications," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, Charleston, SC, 2009.

4. Gaboardi, P., L. Rosa, A. Cucinotta, and S. Selleri, "Patch array antenna for UWB radar applications," 2006 European Radar Conference, 281-284, Manchester, 2006.
doi:10.1109/EURAD.2006.280329

5. Ghanem, F., P. S. Hall, and J. R. Kelly, "Two port frequency reconfigurable antenna for cognitive radios," Electronics Letters, Vol. 45, No. 11, 534-536, May 21, 2009.
doi:10.1049/el.2009.0935

6. Puente, C., J. Anguera, C. Borja, and J. Soler, "Fractal-shaped antennas and their application to GSM 900/1800," The Journal of the Institution of British Telecommunications Engineers, Vol. 2, Part 3, Jul.-Sept. 2001.

7. Risco, S., J. Anguera, A. Andújar, A. Pérez, and C. Puente, "Coupled monopole antenna design for multiband handset devices," Microwave and Optical Technology Letters, Vol. 52, No. 10, 359-364, Feb. 2010.
doi:10.1002/mop.24893

8. Anguera, J., C. Puente, and C. Borja, "Dual frequency broadband microstrip antenna with a reactive loading and stacked elements," Progress In Electromagnetics Research Letters, Vol. 10, 1-10, 2009.
doi:10.2528/PIERL09040704

9. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.
doi:10.2528/PIERM12102705

10. Hsieh, G. B., M. H. Chen, and K. L. Wong, "Single feed dual-band circularly polarized microstrip antenna," Electronics Letters, Vol. 34, 1170-1171, 1998.
doi:10.1049/el:19980909

11. Jin, G. P., D. L. Zhang, and R. L. Li, "Optically controlled reconfigurable antenna for cognitive radio applications," Electronics Letters, Vol. 47, No. 17, 948-950, Aug. 18, 2011.
doi:10.1049/el.2011.1958

12. Medeiros, C. R., E. B. Lima, J. R. Costa, and C. A. Fernandes, "Wideband slot antenna for WLAN access points," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 79-82, 2010.
doi:10.1109/LAWP.2010.2043332

13. Lim, J. H., G. T. Back, Y. I. Ko, C. W. Song, and T. Y. Yun, "A reconfiurable PIFA using a switchable PIN-diode and a fine-tuning varactor for USPCS/WCDMA/m-WiMAX/WLAN," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2404-2411, Jul. 2010.

14. Rabemanantsoa, J. and A. Sharaiha, "Size reduced multi-band printed quadrifilar helical antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3138-3143, Sept. 2011.
doi:10.1109/TAP.2011.2161436

15. Sanad, M., "A small size microstrip antenna having a partial short circuit," Ninth International Conference on Antennas and Propagation, 1995, (Conf. Publ. No. 407), Vol. 1, 282-285, Eindhoven, 1995.

16. Sri , M. N., M. Meloui, and M. Essaaidi, "Rectangular slotted patch antenna for 5-6 GHz applications," International Journal of Microwave and Optical Technology, Vol. 5, No. 2, 52-57, Mar. 2010.

17. Vainikainen, P., J. Ollikainen, O. Kivekäs, and I. Kelander, "Resonator-based analysis of the combination of mobile handset antenna and chassis," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1433-1444, Oct. 2002.
doi:10.1109/TAP.2002.802085

18. Hossa, R., A. Byndas, and M. E. Bialkowski, "Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, Jun. 2004.
doi:10.1109/LMWC.2004.828007

19. Anguera, J., A. Cabedo, C. Picher, I. Sanz, M. Ribó, and C. Puente, "Multiband handset antennas by means of groundplane modification," IEEE Antennas and Propagation Society International Symposium, 1253-1256, Honolulu, Hawaii, USA, Jun. 2007.

20. Su, S. W., "High-gain dual-loop antennas for MIMO access points in the 2.4/5.2/5.8 GHz bands," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2412-2419, Jul. 2010.

21. Wang, Y., D. Su, and Y. Xiao, "Broadband circularly polarized square microstrip antenna," 2006 7th International Symposium on Antennas, Propagation & EM Theory, 1-4, Guilin, 2006.

22. Zhang, Z.-Y., Y.-X. Guo, L. C. Ong, and M. Y. W. Chia, "A new wide-band planar balun on a single-layer PCB," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 6, 416-418, Jun. 2005.
doi:10.1109/LMWC.2005.850486