Vol. 54
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-22
Studies on the Effect of Angle of Attack on the Transmission of Terahertz Waves in Reentry Plasma Sheaths
By
Progress In Electromagnetics Research M, Vol. 54, 175-182, 2017
Abstract
The communication `blackout' in the reentry stage of a space mission is a serious threat to the reentry vehicle. The terahertz (THz) technology is supposed to be a potential solution to the `blackout' problem in the recent decade. In the present paper, the relation between the THz waves' transmission in the reentry plasma sheath and the angle of attack (AOA) of the vehicle is investigated. A three dimensional numerical model is introduced in order to obtain the plasma parameters in the reentry plasma sheaths. The computation results show that both the electron density and the electron collision frequency vary with the AOA. As results, the transmission rates for the THz waves vary with the AOA as well. According to the analysis, microwave communication system is very likely to suffer from the `blackout' in the reentry stage. The THz scheme is an effective solution. The fluctuation of AOA may weaken the signal strength received by the onboard antenna. On the other hand, keeping the AOA in an appropriate range is helpful for strengthening the received THz signals. Also, the AOA for the best THz communication quality is obtained according to the analysis.
Citation
Kai Yuan Ming Yao Linfang Shen Xiaohua Deng Lujun Hong , "Studies on the Effect of Angle of Attack on the Transmission of Terahertz Waves in Reentry Plasma Sheaths," Progress In Electromagnetics Research M, Vol. 54, 175-182, 2017.
doi:10.2528/PIERM16122502
http://www.jpier.org/PIERM/pier.php?paper=16122502
References

1. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiell, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80, 2016.
doi:10.1021/acs.nanolett.5b02901

2. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 2016.
doi:10.1038/srep20474

3. Ai, X., Y. Tian, Z. Cui, Y. Han, and X.-W. Shi, "A dispersive conformal FDTD technique for accurate modeling electromagnetic scattering of THz waves by inhomogeneous plasma cylinder array," Progress In Electromagnetics Research, Vol. 142, 353-368, 2013.
doi:10.2528/PIER13052409

4. Yuan, C.-X., Z.-X. Zhou, J. W. Zhang, X.-L. Xiang, F. Yue, and H.-G. Sun, "FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 39, No. 7, 1577-1584, 2011.
doi:10.1109/TPS.2011.2151207

5. Tian, Y., Y. Han, Y. Ling, and X. Ai, "Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency," Physics of Plasmas, Vol. 21, No. 2, 023301, (1994-present), 2014.

6. Zheng, L., Q. Zhao, S. Liu, X. Xing, and Y. Chen, "Theoretical and experimental studies of terahertz 219 wave propagation in unmagnetized plasma," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, No. 2, 187-197, 2014.
doi:10.1007/s10762-013-0035-y

7. Li, J., Y. Pi, and X. Yang, "A conception on the terahertz communication system for plasma sheath penetration," Wireless Communications and Mobile Computing, Vol. 14, No. 13, 1252-1258, 2014.
doi:10.1002/wcm.2225

8. Starkey, R. P., "Hypersonic vehicle telemetry blackout analysis," Journal of Spacecraft and Rockets, Vol. 52, No. 2, 426-438, 2015.
doi:10.2514/1.A32051

9. Meyer, J. W., "System and method for reducing plasma induced communication disruption utilizing electrophilic injectant and sharp reentry vehicle nose shaping,", US Patent 7237752, 2007.

10. Chen, J., K. Yuan, L. Shen, X. Deng, L. Hong, and M. Yao, "Studies of terahertz wave propagation in realistic reentry plasma sheath," Progress In Electromagnetics Research, Vol. 157, 21-29, 2016.
doi:10.2528/PIER16061202

11. Jung, M., H. Kihara, K. I. Abe, and Y. Takahashi, "Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry," Journal-Korean Physical Society, Vol. 68, No. 11, 1295-1306, 2016.
doi:10.3938/jkps.68.1295

12. Kundrapu, M., J. Loverich, K. Beckwith, and P. Stoltz, "Electromagnetic wave propagation in the plasma layer of a reentry vehicle," IEEE International Conference on Plasma Sciences, 1-4, 2014.

13. Kundrapu, M., J. Loverich, K. Beckwith, P. Stoltz, A. Shashurin, and M. Keidar, "Modeling radio communication blackout and blackout mitigation in hypersonic vehicles," Journal of Spacecraft and Rockets, Vol. 52, No. 3, 853-862, 2015.
doi:10.2514/1.A33122

14. Gupta, R. N., J. M. Yos, R. A. Thompson, and K.-P. Lee, "A review of reaction rates and 241 thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K," NASA STI/Recon Technical Report N, Tech. Rep., Aug. 1990.

15. Grantham, W. L., "Flight results of a 25000-foot-per-second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance,", Tech. Rep., NASA TN D-6062, Washington, D. C., Dec. 1970.

16. Jones, Jr., W. L. and A. E. Cross, "Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second,", Tech. Rep., NASA TN D-6617, Washington, D. C., Feb. 1972.

17. Lankford, D. W., "A study of electron collision frequency in air mixtures and turbulent boundary,", Tech. Rep., DTIC Document AFWL-TR-72-71, Oct. 1972.

18. Reddy, D. S. K. and K. Sinha, "Hypersonic turbulent flow simulation of Fire II reentry vehicle afterbody," Journal of Spacecraft and Rockets, Vol. 46, No. 4, 745-757, 2009.
doi:10.2514/1.41380

19. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace Electronic Systems, Vol. 7, No. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328

20. Mehra, N., R. K. Singh, and S. C. Bera, "Mitigation of communication blackout during re-entry using static magnetic field," Progress In Electromagnetics Research B, Vol. 63, 161-172, 2015.
doi:10.2528/PIERB15070107

21. Zheng, L., Q. Zhao, S. Liu, P. Ma, C. Huang, Y. Tang, X. Chen, X. Xing, C. Zhang, and X. Luo, "Theoretical and experimental studies of 35 GHz and 96 GHz electromagnetic wave propagation in plasma," Progress In Electromagnetics Research M, Vol. 24, 179-192, 2012.
doi:10.2528/PIERM12030709

22. Jastrow, C., S. Priebe, B. Spitschan, J.-M. Hartmann, M. Jacob, T. Kurner, T. Schrader, and T. Kleine-Ostmann, "Wireless digital data transmission at 300 GHz," Electronics Letters, Vol. 46, No. 9, 661-663, 2010.
doi:10.1049/el.2010.3509