Vol. 56

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-04-16

A Rank-(L, L, 1) BCD Based AOA-Polarization Joint Estimation Algorithm for Electromagnetic Vector Sensor Array

By Yu-Fei Gao and Qun Wan
Progress In Electromagnetics Research M, Vol. 56, 25-32, 2017
doi:10.2528/PIERM17020802

Abstract

This paper investigates an angle of arrival (AOA) and polarization joint estimation algorithm for an L-shaped electromagnetic vector sensor array based on rank-(L, L, 1) block component decomposition (BCD) tensor modeling. The proposed algorithm can take full advantage of the multidimensional information of electromagnetic signal to obtain the parameter estimation more accurately than the matrix-based method and the existing tensor decomposition method. In addition, the algorithm can accomplish pair-matching of estimated parameters automatically. The numerical experiments demonstrate that even under the conditions of low SNR and limited snapshots, the proposed algorithm can still steadily achieve high detection probability with low estimation error, which is important for practical applications.

Citation


Yu-Fei Gao and Qun Wan, "A Rank-(L, L, 1) BCD Based AOA-Polarization Joint Estimation Algorithm for Electromagnetic Vector Sensor Array," Progress In Electromagnetics Research M, Vol. 56, 25-32, 2017.
doi:10.2528/PIERM17020802
http://www.jpier.org/PIERM/pier.php?paper=17020802

References


    1. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Trans. Signal Process., Vol. 42, No. 2, 376-398, Feb. 1994.
    doi:10.1109/78.275610

    2. Tan, K.-C., K.-C. Ho, and A. Nehorai, "Linear independence of steering vectors of an electromagnetic vector sensor," IEEE Trans. Signal Process., Vol. 44, No. 12, 3099-3107, Dec. 1996.
    doi:10.1109/78.553483

    3. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor esprit for multisource azimuth, elevation, and polarization estimation," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1467-1474, 1997.
    doi:10.1109/8.633852

    4. Cichocki, A., D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan, "Tensor decompositions for signal processing applications: From two-way to multiway component analysis," IEEE Signal Process. Mag., Vol. 32, No. 2, 145-163, 2015.
    doi:10.1109/MSP.2013.2297439

    5. Sidiropoulos, N. D., R. Bro, and G. B. Giannakis, "Parallel factor analysis in sensor array processing," IEEE Trans. Signal Process., Vol. 48, No. 8, 2377-2388, 2000.
    doi:10.1109/78.852018

    6. Gao, Y.-F., L. Zou, and Q. Wan, "A two-dimensional arrival angles estimation for L-shaped array based on tensor decomposition," AEU Int. J. Electron. Commun., Vol. 69, No. 4, 736-744, 2015.
    doi:10.1016/j.aeue.2015.01.001

    7. Miron, S., X. Guo, and D. Brie, "DOA estimation for polarized sources on a vector-sensor array by parafac decomposition of the fourth-order covariance tensor," 16th European Signal Processing Conference, 1-5, Aug. 2008.

    8. Guo, X., S. Miron, D. Brie, S. Zhu, and X. Liao, "A candecomp/parafac perspective on uniqueness of DOA estimation using a vector sensor array," IEEE Trans. Signal Process., Vol. 59, No. 7, 3475-3481, Jul. 2011.

    9. Forster, P., G. Ginolhac, and M. Boizard, "Derivation of the theoretical performance of a tensor music algorithm," Signal Process., Vol. 129, 97-105, 2016.
    doi:10.1016/j.sigpro.2016.05.033

    10. Stegeman, A., "Candecomp/Parafac: From diverging components to a decomposition in block terms," SIAM J. Matrix Anal. Appl., Vol. 33, No. 2, 209-215, 2012.
    doi:10.1137/110825327

    11. De Lathauwer, L., "Decompositions of a higher-order tensor in block terms - Part ii: Definitions and uniqueness," SIAM J. Matrix Anal. Appl., Vol. 30, No. 3, 1033-1066, 2008.
    doi:10.1137/070690729

    12. De Lathauwer, L. and D. Nion, "Decompositions of a higher-order tensor in block terms - Part iii: Alternating least squares algorithms," SIAM J. Matrix Anal. Appl., Vol. 30, No. 3, 1067-1083, 2008.
    doi:10.1137/070690730

    13. De Lathauwer, L., "Blind separation of exponential polynomials and the decomposition of a tensor in rank-(l r,l r,1) terms," SIAM J. Matrix Anal. Appl., Vol. 32, No. 4, 1451-1474, 2011.
    doi:10.1137/100805510

    14. Zhao, Q., C. F. Caiafa, D. P. Mandic, Z. C. Chao, Y. Nagasaka, N. Fujii, L. Zhang, and A. Cichocki, "Higher order partial least squares (hopls): A generalized multilinear regression method," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 35, No. 7, 1660-1673, 2013.
    doi:10.1109/TPAMI.2012.254

    15. Nie, X. and P. Wei, "Array aperture extension algorithm for 2-d DOA estimation with L-shaped array," Progress In Electromagnetics Research Letters, Vol. 52, 63-69, 2015.
    doi:10.2528/PIERL15011502

    16. Comon, P., X. Luciani, and A. L. De Almeida, "Tensor decompositions, alternating least squares and other tales," J. Chemom., Vol. 23, No. 7-8, 393-405, 2009.
    doi:10.1002/cem.1236

    17. Sorber, L., M. Van Barel, and L. De Lathauwer, "Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(l r,l r,1) terms, and a new generalization," SIAM J. Optim., Vol. 23, No. 2, 695-720, 2013.
    doi:10.1137/120868323

    18. Miron, S., N. Le Bihan, and J. I. Mars, "Vector-sensor music for polarized seismic sources localization," EURASIP J. Adv. Signal Process., Vol. 2005, No. 1, 1-11, 2005.
    doi:10.1155/ASP.2005.74

    19. Zhang, X. and D. Xu, "Deterministic blind beamforming for electromagnetic vector sensor array," Progress In Electromagnetics Research, Vol. 84, 363-377, 2008.
    doi:10.2528/PIER08080402