In this work, the multi-resonance behavior of a suspended ring antenna structure with a single port has been investigated. Introduction of symmetrical slots at each arm of the ring structure enables quad-band operation. The antenna yields good impedance matching at 3.4 GHz, 4.5 GHz, 5.8 GHz and 7.5 GHz with considerably high gain response up to 6 dBi. Maintaining suitable air height from the ground plane enhances the bandwidth up to 12%. This compact antenna shows bandwidths of 130 MHz, 360 MHz, 850 MHz, and 380 MHz, respectively. Each resonance claims an efficient use in next generation wireless communication within S-band and C-band radio links extensively and also applicable in WSNs/IoTs which requires a multi-functional antenna system. Theoretical analysis of the proposed antenna is investigated with the equivalent lumped circuit. The antenna element is excited using separate feed patch alongside of the ring. The antenna exhibits TM10, TM01, TM11 excitation modes at different resonances. The said antenna is implemented on an FR4 substrate with dielectric constant of 4.4, substrate thickness of h = 1.56 mm and loss tangent of tanδ=0.02. The antenna is designed with physical dimensions of 18×18×7.56 mm3 which claims its compactness.
2. Jiang, F., J. Chen, Swindlehurst, A. Lee, and J. A. Lopez-salcedo, "Massive MIMO for wireless sensing with a coherent multiple access channel," IEEE Transactions on Signal Processing, Vol. 63, No. 12, June 2015.
doi:10.1109/TSP.2015.2417508
3. Park, D.-H. and Y.-S. Kwak, "Design multi-band microstrip patch antenna for wireless terminals," IEEE Future Generation Communication and Networking Letter, Vol. 2, 439-441, 2007.
doi:10.1109/FGCN.2007.99
4. Sharawi, M. S., "Printed multi-band MIMO antenaa systems and their performance metrics," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 2013.
doi:10.1109/MAP.2013.6735522
5. Balanis, A., Antenna Theory Analysis and Design, 3rd Ed., A John Wiley & Sons, Inc. Publication, 2003.
6. Liao, W., S. Chang, and L. Li, "A compact planer multiband antenna for integrated mobile devices," Progress In Electromagnetic Research, Vol. 109, 1-16, 2010.
doi:10.2528/PIER10083001
7. Fallahpour, M., M. T. Ghasr, and R. Zoughi, "Miniaturized reconfigurable multiband antenna for multiradio wireless communication," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6049-6059, 2014.
doi:10.1109/TAP.2014.2364293
8. Wang, C. and S.-W. Chang, "Studies on dual-band multi-slot antennas," Progress In Electromagnetic Research, Vol. 83, 293-306, 2008.
doi:10.2528/PIER08061104
9. Sarkar, D., K. Saurav, and K. V. Srivastava, "Multi-band microstrip-fed slot antenna loaded with split-ring resonator," IET Electronics Letters, Vol. 50, No. 21, 1498-1500, 2014.
doi:10.1049/el.2014.2625
10. Kokotoff, D. M., J. T. Aberle, and R. B. Waterhouse, "Rigorous analysis of probe-fed printed annular ring antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 2, 384-388, 1999.
doi:10.1109/8.761079
11. Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Carirci, "Wireless sensor networks: A Survey," ELSEVIER Journal on Computer Networks, Vol. 38, No. 4, 393-442, 2002.
doi:10.1016/S1389-1286(01)00302-4
12. Lei, Y., Y. Zhang, and Y. Zhao, "The research of coverage problems in wireless sensor network," IEEE WINS Proceedings, 31-34, 2009, ISBN: 978-0-7695-3901-0.
13. Nassar, I. T., J. Wang, J. L. Frolik, and T. M. Weller, "A high-efficiency, miniaturized sensor node with 3-D machined-substarte antennas for embedded wireless monitoring," IEEE Sensors Journal, Vol. 15, No. 9, 5036-5044, September 2015.
doi:10.1109/JSEN.2015.2432807
14. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1617-1655, 2016.
doi:10.1109/COMST.2016.2532458
15. Internet of Things: Wireless Sensor Networks, Iternational Electrotechnical Commission, Geneva, Switzerland, 2014.
16. Yurduseven, O., D. Smith, N. Pearsall, and I. Forbes, "A solar cell stacked slot-loaded suspended microstrip patch antenna with multi-band resonance characteristics for WLAN and WIMAX systems," Progress In Electromagnetics Research, Vol. 142, 321-332, 2013.
doi:10.2528/PIER13081502
17., "Optimizing 4 GHz mission critical networks," Microwave Journal, Billerica, MA, 2009.
18. Youell, T., "NTT Docomo and Nokia research 5G in 4.4-4.9 GHz bands,", Policy Tracker, July 2015.
19. http//www.policytracker.com/headlines/ntt-docomo-and-nokia-research-5g-in-4.4-2013-4.9-ghz-band.
20. Behera, S. and D. Barad, "Design of microstrip antenna for wireless communication with compact size," IEEE ICECCT Proceedings, Vol. 3, 1473-1476, 2015, ISBN: 978-1-4799-6085-9.
21. Behera, S. and D. Barad, "A novel design of microstrip fractal antenna for wireless sensor network," IEEE ICCPEIC Proceedings, 2015, ISBN: 978-1-4673-6524-6.
22. Behera, S. and K. J. Vinoy, "Microstrip square ring antennas for dual-band operation," Progress In Electromagnetics Research, Vol. 93, 41-56, 2009.
doi:10.2528/PIER09021909
23. Behera, S. and D. Barad, "Circular polarized dual-band antenna for WLAN/Wi-MAX application," Int. J. RF and Microwave Comp. Aid. Eng., 2016, doi:10.1002/mmce.21046.
24. Kasabegoudar, V. G. and K. J. Vinoy, "Coplaner capacitive coupled probe fed microstrip antennas for aideband applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3131-3138, 2010.
doi:10.1109/TAP.2010.2055781
25. Chang, K. and L. Hsieh, Microwave Ring Circuits and Related Structures, 2nd Ed., Chapter 1, John Wiley & Sons, Inc Publication, USA, 2004.
26. Stutzmanet, W. L., et al., Antenna Theory and Design, 3rd Ed., John Wiley & Sons, Inc Publication, USA, 2013.
27. Guha, D. and Y. M. N. Antar, Microstrip and Printed Antennas New Trends Techniques & Application, 2nd Ed., Chapter 2, John Wiley & Sons, Inc Publication, UK, 2011.
doi:10.1002/9780470973370