Vol. 56
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-27
Estimation of Specific Absorption Rate Using Infrared Thermography for the Biocompatibility of Wearable Wireless Devices
By
Progress In Electromagnetics Research M, Vol. 56, 101-109, 2017
Abstract
Wearable wireless technology has developed as an exciting topic over the last couple of years. With the extensive use of Wearable Wireless Devices (WWD) in greater proximity to the body for various wireless applications, the concern about biological effects due to the interaction of human tissues with the radiations is growing. In this research, we investigate the application of Infrared Thermography (IRT) to obtain temperature dynamics and reconstruct Specific Absorption Rate (SAR) to evaluate the exposure amenability of WWDs. A microstrip monopole antenna on a wearable substrate is used to determine the biological effects of the interaction of electromagnetic (EM) waves on the body. SAR is obtained using EM field simulations and by reconstruction from thermal measurements with the use of Bio-heat equationsfor a continuous exposure of 300 s. Validation of IRT to reconstruct SAR is demonstrated by comparison with EM computations. The maximum SAR was 32 mW/kg, for simulations and 35 mW/kg, from reconstruction after IRT experiments. The maximum temperature change in both cases was always less than 1˚C. The difference between the SAR obtained through IRT and simulation tools accounted for an average of 8.7%. Information acquired using IR temperature dynamics can yield SAR values which can assess radio frequency exposure compliance for WWD at frequencies used for modern wireless technologies, with reliability.
Citation
Karthik Varshini Thipparaju Rama Rao , "Estimation of Specific Absorption Rate Using Infrared Thermography for the Biocompatibility of Wearable Wireless Devices," Progress In Electromagnetics Research M, Vol. 56, 101-109, 2017.
doi:10.2528/PIERM17022603
http://www.jpier.org/PIERM/pier.php?paper=17022603
References

1. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Wireless Communications, 2nd Ed., Artech House, 2012.

2. Christ, A., M. C. Gosselin, M. Christopoulou, S. Kuhn, and N. Kuster, "Age-dependent tissue-specific exposure of cell phone users," Phys. Med. Biol., Vol. 55, 1767-1783, 2010.
doi:10.1088/0031-9155/55/7/001

3. Brishoual, M., C. Dale, J. Wiart, and J. Citerne, "Methodology to interpolate and extrapolate SAR measurements in a volume in dosimetric experiment," IEEE Trans. Electromagn. Compat., Vol. 43, 382-389, 2001.
doi:10.1109/15.942609

4. Chavannes, N., R. Tay, N. Nikoloski, and N. Kuster, "Suitability of FDTD-based TCAD tools for RF design of mobile phones," IEEE Antennas and Propagation Magazine, Vol. 45, 52-66, 2003.
doi:10.1109/MAP.2003.1282180

5. Schmid, T., O. Egger, and N. Kuster, "Automated E-field scanning system for dosimetric assessments," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 105-113, 1996.
doi:10.1109/22.481392

6. Institute of Electrical and Electronics Engineers Recommended practice for determining the peak spatial-average SAR in the human head from wireless communications devices: Measurement techniques, IEEE Standard 1528-2013, 2013.

7. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: Interactions and implications," 2015 IEEE International Conference on Communications (ICC), 2423-2429, IEEE, 2015.
doi:10.1109/ICC.2015.7248688

8. Chou, C. K. and J. A. D'Andrea, "Reviews of effects of RF fields on various aspects of human health: Introduction," Bioelectromagnetics, Vol. 24.S6, 2003.

9. Tuovinen, T., M. Berg, K. Y. Yazdandoost, and J. Linatti, "On the evaluation of biological effects of wearable antennas on contact with dispersive medium in terms of SAR and bio-heat by using FIT technique," ISMICT, 149-153, Tokyo, Mar. 2013.

10. Thotahewa, K. M., J. M. Redouté, and M. R. Yuce, "SAR, SA, and temperature variation in the human head caused by IR-UWB implants operating at 4 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 5, 2161-2169, 2013.
doi:10.1109/TMTT.2013.2250515

11. Zhadobov, M., N. Chahat, R. Sauleau, C. Le Quement, and Y. Le Drean, "Millimeter-wave interactions with the human body: State of knowledge and recent advances," International Journal of Microwave and Wireless Technologies, Vol. 3, No. 2, 237-247, 2011.
doi:10.1017/S1759078711000122

12. Wu, T., T. S. Rappaport, and C. M. Collin, "Safe for generations to come: Considerations of safety for millimeter waves in wireless communications," IEEE Microwave Magazine, Vol. 16, No. 2, 65-84, 2015.
doi:10.1109/MMM.2014.2377587

13. Sankaralingam, S. and B. Gupta, "Development of textile antennas for body wearable applications and investigations on their performance under bent conditions," Progress In Electromagnetics Research B, Vol. 22, 53-71, 2010.
doi:10.2528/PIERB10032705

14. Florence, E. S., M. Kanagasabai, and G. N. M. Alsath, "An investigation of a wearable antenna using human body modelling," Applied Computational Electromagnetics Society Journal, Vol. 29, No. 10, 2014.

15. Alon, L., G. Y. Cho, X. Yang, D. K. Sodickson, and C. M. Deniz, "A method for safety testing of radiofrequency/microwave-emitting devices using MRI," Magnetic Resonance in Medicine, Vol. 74, No. 5, 1397-1405, 2015.
doi:10.1002/mrm.25521

16. Alon, L., D. K. Sodickson, and C. M. Deniz, "Heat equation inversion framework for average SAR calculation from magnetic resonance thermal imaging," Bioelectromagnetics, Vol. 37, No. 7, 493-503, 2016.
doi:10.1002/bem.21996

17. Karthik, V. and T. Rama Rao, "Thermal distribution based investigations on electromagnetic interactions with the human body for wearable wireless devices," Progress In Electromagnetics Research M, Vol. 50, 141-150, 2016.
doi:10.2528/PIERM16071703

18. Gabriel, C., S. Gabriely, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

19. Italian National Research Council, Institute for Applied Physics, homepage on Dielectric properties of body tissues, [Online]. Available: http://niremf.ifac.cnr.it.

20. Tuovinen, T., M. Berg, K. Y. Yazdandoost, and J. Linatti, "Ultra wideband loop antenna on contact with human body tissues," IET Microwave and Antennas Propagation, Vol. 7, No. 7, 588-596, 2013.
doi:10.1049/iet-map.2012.0082

21. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

22. Allen, S. G., et al., "ICNIRP guidelines for limiting to time varying electric, magnetic, and electromagnetic fields (upto 300 GHz)," Health Physics, Vol. 74, No. 4, 494-522, 1998.

23. IEEE Standard for Safety Levels with Respect to Human Exposure to the Radio Frequency Electromagnetic Fields 3 kHz to 300 GHz, IEEE Std. C95.1, 2005.

24. Kritikos, H. N., P. Herman, and Schwan, "Potential temperature rise induced by electromagnetic-field in brain tissues," IEEE Trans. on Biomedical Engineering, Vol. 26, No. 1, 29-34, 1979.
doi:10.1109/TBME.1979.326493

25. Karthik, V. and T. Rama Rao, "Investigations on SAR and thermal effects of a body wearable microstrip antenna," Wireless Personal Communications, 1-17, 2017, DOI: 10.1007/s11277-017-4059-9.