Vol. 56
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-05-04
Point Target Detection in Space-Based Infrared Imaging System Based on Multi-Direction Filtering Fusion
By
Progress In Electromagnetics Research M, Vol. 56, 145-156, 2017
Abstract
Point target detection in space-based infrared (IR) imaging system is an important task in many applications such as IR searching and tracking and remote sensing. Although it has attracted great interest and tremendous efforts during last decades, it remains a challenging problem due to the uncertain heterogeneous background and the limited processing resources on the onboard platform. Aiming at this problem, a novel background suppression method based on multi-direction filtering fusion is proposed in this paper. The process of background prediction for each pixel by this method can be divided into two steps. Firstly, eight predicted values are obtained by using linear filtering methods along eight different directions respectively. Then, Gaussian weighted sum of the eight predicted values is computed to generate the final result. We conduct several groups of experiments on different categories scenes with simulated targets, and the final experimental results demonstrate that our methods can not only obtain state-of-the-art performance on background suppression (especially for heterogeneous backgrounds), but also detect targets accurately with low false alarm rate and high speed in IR point target detection tasks.
Citation
Bendong Zhao, Shanzhu Xiao, Huanzhang Lu, and Junliang Liu, "Point Target Detection in Space-Based Infrared Imaging System Based on Multi-Direction Filtering Fusion," Progress In Electromagnetics Research M, Vol. 56, 145-156, 2017.
doi:10.2528/PIERM17030401
References

1. Wan, M., G. Gu, E. Cao, X. Hu, W. Qian, and K. Ren, "In-frame and inter-frame information based infrared moving small target detection under complex cloud backgrounds," Infrared Physics & Technology, Vol. 76, 455-467, May 1, 2016.
doi:10.1016/j.infrared.2016.04.003

2. Deng, L., H. Zhu, C. Tao, and Y. Wei, "Infrared moving point target detection based on spatial-temporal local contrast filter," Infrared Physics & Technology, Vol. 76, 168-173, May 1, 2016.
doi:10.1016/j.infrared.2016.02.010

3. Chen, Z., T. Deng, L. Gao, H. Zhou, and S. Luo, "A novel spatial-temporal detection method of dim infrared moving small target," Infrared Physics & Technology, Vol. 66, 84-96, Sept. 1, 2014.
doi:10.1016/j.infrared.2014.05.007

4. Zhao, F., H. Lu, Z. Zhang, and S. Xiao, "Complex background suppression based on fusion of morphological open filter and nucleus similar pixels bilateral filter," Infrared Physics & Technology, Vol. 55, 454-461, Nov. 1, 2012.
doi:10.1016/j.infrared.2012.07.010

5. Chen, Z., S. Luo, T. Xie, J. Liu, G. Wang, and G. Lei, "A novel infrared small target detection method based on BEMD and local inverse entropy," Infrared Physics & Technology, Vol. 66, 114-124, Sept. 1, 2014.
doi:10.1016/j.infrared.2014.05.013

6. Bouwmans, T., "Traditional and recent approaches in background modeling for foreground detection: An overview," Computer Science Review, Vol. 11-12, 31-66, May 1, 2014.
doi:10.1016/j.cosrev.2014.04.001

7. Bai, X., S. Zhang, B. Du, Z. Liu, T. Jin, B. Xue, and F. Zhou, "Survey on dim small target detection in clutter background: Wavelet, inter-frame and filter based algorithms," Procedia Engineering, Vol. 15, 479-483, Jan. 1, 2011.
doi:10.1016/j.proeng.2011.08.091

8. Hou, W., Z. Lei, Q. Yu, and X. Liu, "Small target detection using main directional suppression high pass filter," Optik - International Journal for Light and Electron Optics, Vol. 125, 3017-3022, Jul. 1, 2014.
doi:10.1016/j.ijleo.2013.12.025

9. Deshpande, S. D., M. H. Er, R. Venkateswarlu, and P. Chan, "Max-mean and max-median filters for detection of small targets," SPIE Signal and Data Processing of Small Targets, 74-83, 1999.

10. Bai, X. and F. Zhou, "Analysis of new top-hat transformation and the application for infrared dim small target detection," Pattern Recognition, Vol. 43, 2145-2156, Jun. 1, 2010.
doi:10.1016/j.patcog.2009.12.023

11. Zeng, M., J. Li, and Z. Peng, "The design of Top-Hat morphological filter and application to infrared target detection," Infrared Physics & Technology, Vol. 48, 67-76, Apr. 1, 2006.
doi:10.1016/j.infrared.2005.04.006

12. Bai, X. and F. Zhou, "Infrared small target enhancement and detection based on modified top-hat transformations," Computers & Electrical Engineering, Vol. 36, 1193-1201, Nov. 1, 2010.
doi:10.1016/j.compeleceng.2010.05.008

13. Bae, T., F. Zhang, and I. Kweon, "Edge directional 2D LMS filter for infrared small target detection," Infrared Physics & Technology, Vol. 55, 137-145, Jan. 1, 2012.
doi:10.1016/j.infrared.2011.10.006

14. Cao, Y., R. M. Liu, and J. Yang, "Small target detection using two-dimensional least mean square (TDLMS) filter based on neighborhood analysis," International Journal of Infrared and Millimeter Waves, Vol. 29, 188-200, 2008.
doi:10.1007/s10762-007-9313-x

15. Xie, K., K. Fu, T. Zhou, J. Zhang, J. Yang, and Q. Wu, "Small target detection based on accumulated center-surround difference measure," Infrared Physics & Technology, Vol. 67, 229-236, Nov. 1, 2014.
doi:10.1016/j.infrared.2014.07.006