Vol. 57
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-02
A Small-Signal Analysis Based Thermal Noise Modeling Method for RF SOI MOSFETs
By
Progress In Electromagnetics Research M, Vol. 57, 81-89, 2017
Abstract
We investigate thermal noise mechanisms and present analytical expressions of the noise power spectral density at high frequencies (HF) in Silicon-on-insulator (SOI) MOSFETs. The developed HF noise model of RF T-gate body contact (TB) SOI MOSFET for 0.13-μm SOI CMOS technology accounts for the mechanisms of 1) channel thermal noise; 2) induced gate noise; 3) substrate resistance noise and 4) gate resistance thermal noise. The extraction method of modeling parameter utilized by Y-parameter analysis on the proposed small-signal equivalent circuit is demonstrated in this paper. Excellent agreement between simulated and measured noise data is obtained at different temperatures.
Citation
Xiang Wang, Yuping Huang, Jun Liu, and Jie Wang, "A Small-Signal Analysis Based Thermal Noise Modeling Method for RF SOI MOSFETs ," Progress In Electromagnetics Research M, Vol. 57, 81-89, 2017.
doi:10.2528/PIERM17030608
References

1. Lee, B. J., K. Kim, C. G. Yu, et al. "Effects of gate structures on the RF performance in PD SOI MOSFETs," IEEE Microwave & Wireless Components Letters, Vol. 15, No. 4, 223-225, 2005.
doi:10.1109/LMWC.2005.845697

2. Scholten, A. J., L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, "Noise modeling for RF CMOS circuit simulation," IEEE Trans. Electron Devices, Vol. 50, No. 3, 618-632, Mar. 2003.
doi:10.1109/TED.2003.810480

3. Smit, G. D. J., A. J. Scholten, R. M. T. Pijper, et al. "RF-noise modeling in advanced CMOS technologies," IEEE Trans. Electron Devices, Vol. 61, No. 2, 245-254, 2014.
doi:10.1109/TED.2013.2282960

4. Mukherjee, C. and C. K. Maiti, "Channel thermal noise modeling and high frequency noise parameters of tri-gate FinFETs," IEEE Physical and Failure Analysis of Integrated Circuits, 732-735, 2013.

5. Chan, L. H. K., K. S. Yeo, K. W. J. Chew, et al. "High-frequency noise modeling of MOSFETs for Ultra low-voltage RF applications," IEEE Transactions on Microwave Theory & Techniques, Vol. 63, No. 1, 141-154, 2015.
doi:10.1109/TMTT.2014.2371827

6. Chen, C.-H., M. J. Deen, Y. Cheng, and M. Matloubian, "Extraction of the induced gate noise, channel noise, and their correlation in submicron MOSFETs from RF noise measurements," IEEE Trans. Electron Devices, Vol. 48, No. 12, 2884-2892, Dec. 2001.
doi:10.1109/16.974722

7. Antonopoulos, A., M. Bucher, K. Papathanasiou, et al. "CMOS small-signal and thermal noise modeling at high frequencies," IEEE Trans. Electron Devices, Vol. 460, No. 11, 3726-3733, 2013.
doi:10.1109/TED.2013.2283511

8. Chen, C., "Accuracy issues of on-wafer microwave noise measurement," Fluctuation & Noise Letters, Vol. 48, No. 03n04, L281-L303, 2012.

9. Chalkiadaki, M. A. and C. C. Enz, "RF small-signal and noise modeling including parameter extraction of nanoscale MOSFET from weak to strong inversion," IEEE Transactions on Microwave Theory & Techniques, Vol. 463, No. 7, 1-12, 2015.

10. Chen, C. H., D. Chen, R. Lee, et al. "Thermal noise modeling of nano-scale MOSFETs for mixed-signal and RF applications," IEEE Custom Integrated Circuits Conference, 1-8, 2013.

11. Ong, S. N., "High frequency noise modeling of deep-submicron MOSFETs,", Ph.D. Thesis, NTU, 2015, https://repository.ntu.edu.sg/bitstream/handle/10356/63701/High?sequence=1.

12. Deen, M. J., C.-H. Chen, S. Asgaran, G. A. Rezvani, J. Tao, and Y. Kiyota, "High-frequency noise of modern MOSFETs: Compact modeling and measurement issues," IEEE Trans. Electron Devices, Vol. 53, No. 9, 2062-2081, Sep. 2006.
doi:10.1109/TED.2006.880370

13. Ong, S. N., et al. "Substrate-induced noise model and parameter extraction for high-frequency noise modeling of sub-micron MOSFETs," IEEE Transactions on Microwave Theory & Techniques, Vol. 62, No. 9, 1973-1985, 2014.
doi:10.1109/TMTT.2014.2340375

14. Adan, A. O., M. Koyanagi, and M. Fukumi, "Physical model of noise mechanisms in SOI and bulk-silicon MOSFETs for RF applications," IEEE Trans. Electron Devices, Vol. 55, No. 3, 872-880, Sep. 2008.
doi:10.1109/TED.2007.915085

15. Wang, S. C., et al. "Investigation of temperature-dependent high-frequency noise characteristics for deep-submicrometer bulk and SOI MOSFETs," IEEE Trans. Electron Devices, Vol. 59, No. 3, 551-556, 2012.
doi:10.1109/TED.2011.2177664

16. Scholten, A. J., L. F. Tiemeijer, R. Van Langevelde, et al. "Noise modeling for RF CMOS circuit simulation," IEEE Trans. Electron Devices, Vol. 50, No. 3, 618-632, 2003.
doi:10.1109/TED.2003.810480

17. Jindal, R. P., "Compact noise models for MOSFETs," IEEE Trans. Electron Devices, Vol. 53, No. 9, 2051-2061, 2006.
doi:10.1109/TED.2006.880368

18. Knoblinger, G., P. Klein, and H. Tiebout, "A new model for thermal channel noise of deep-submicron MOSFETs and its application in RF-CMOS design," IEEE Journal of Solid-State Circuits, Vol. 36, No. 5, 831-837, 2001.
doi:10.1109/4.918922

19. Ickjin, K., J. Minkyu, L. Kwyro, and S. Hyungcheol, "A simple and analytical parameter-extraction method of a microwave MOSFET," IEEE Transactions on Microwave Theory & Techniques, Vol. 50, No. 6, 1503-1509, Jun. 2002.
doi:10.1109/TMTT.2002.1006411

20. Venkataraman, S., B. Banerjee, C. H. Lee, et al. "Cryogenic small signal operation of 0.18 μm MOSFETs," 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 52-55, 2007.
doi:10.1109/SMIC.2007.322767

21. Chen, S., C. Cai, T. Wang, et al. "Cryogenic and high temperature performance of 4H-SiC power MOSFETs," IEEE Applied Power Electronics Conference & Exposition, 207-210, 2013.

22. Scholten, A. J., et al., "Accurate thermal noise model for deep-submicron CMOS," IEDM Tech. Dig., 155-158, Dec. 1999.

23. Tsividis, Y., Operation and Modeling of the MOS Transistor, 2nd Ed., WCB/McGraw-Hill, Boston, 1999.

24. Chen, C. H. and M. J. Deen, "High frequency noise of MOSFETs I modeling," Solid-State Electron, Vol. 42, 2069-81, 1998.
doi:10.1016/S0038-1101(98)00192-0

25. Jeon, J., J. D. Lee, B.-G. Park, and H. Shin, "An analytical channel thermal noise model for deep-submicron MOSFETs with short channel effects," Solid-State Electron, Vol. 51, 1034-8, 2007.
doi:10.1016/j.sse.2007.05.004

26. Han, K., H. Shin, and K. Lee, "Analytical drain thermal noise current model valid for deep submicron MOSFETs," IEEE Trans. Electron Devices, Vol. 51, No. 2, 261-9, 2004.
doi:10.1109/TED.2003.821708

27. Scholten, A. J., et al. "Accurate thermal noise model for deep-submicron CMOS," IEDM Tech. Dig., 155-158, Dec. 1999.

28. Chen, C.-H. and M. J. Deen, "Channel noise modeling of deep submicron MOSFETs," IEEE Trans. Electron Devices, Vol. 49, No. 8, 1484-1487, Aug. 2002.
doi:10.1109/TED.2002.801229

29. Ong, S. N., et al. "Impact of velocity saturation and hot carrier effects on channel thermal noise model of deep sub-micronMOSFETs," Solid State Electron, Vol. 72, 8-11, 2012.
doi:10.1016/j.sse.2012.02.008

30. Van Der Ziel, A., Noise in Solid State Devices and Circuits, Wiley, New York, NY, USA, 1986.

31. Shoji, M., "Analysis of high frequency thermal noise of enhancement mode MOS field-effect transistors," IEEE Trans. Electron Devices, Vol. 13, No. 6, 520-524, Jun. 1966.
doi:10.1109/T-ED.1966.15724

32. Jindal, R. P., "Distributed substrate resistance noise in fine line NMOS field effect transistors," IEEE Trans. Electron Devices, Vol. 32, No. 11, 2450-2453, Nov. 1985.
doi:10.1109/T-ED.1985.22294

33. Nyquist, H., "Thermal agitation of electric charge in conductors," Phys. Rev., Vol. 32, No. 1, 110-113, Jul. 1928.
doi:10.1103/PhysRev.32.110

34. Thornber, K. K., "Resistive-gate-induced thermal noise in IGFET’s," IEEE J. Solid-State Circuits, Vol. 16, No. 4, 414-415, Aug. 1981.
doi:10.1109/JSSC.1981.1051611

35. Jindal, R. P., "Noise associated with distributed resistance of MOSFET gate structures in integrated circuits," IEEE Trans. Electron Devices, Vol. 31, No. 10, 1505-1509, Oct. 1984.
doi:10.1109/T-ED.1984.21741

36. Razavi, B., R. H. Yan, and K. F. Lee, "Impact of distributed gate resistance on the performance of MOS devices," IEEE Trans. Circuits Syst. I, Vol. 41, 750-754, 1994.
doi:10.1109/81.331530

37. Dambrine, G., H. Happy, F. Danneville, and A. Cappy, "A new method for on wafer noise measurement," IEEE Transactions on Microwave Theory & Techniques, Vol. 41, No. 3, 375-381, Mar. 1993.
doi:10.1109/22.223734