Vol. 57

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-06-02

A Small-Signal Analysis Based Thermal Noise Modeling Method for RF SOI MOSFETs

By Xiang Wang, Yuping Huang, Jun Liu, and Jie Wang
Progress In Electromagnetics Research M, Vol. 57, 81-89, 2017
doi:10.2528/PIERM17030608

Abstract

We investigate thermal noise mechanisms and present analytical expressions of the noise power spectral density at high frequencies (HF) in Silicon-on-insulator (SOI) MOSFETs. The developed HF noise model of RF T-gate body contact (TB) SOI MOSFET for 0.13-μm SOI CMOS technology accounts for the mechanisms of 1) channel thermal noise; 2) induced gate noise; 3) substrate resistance noise and 4) gate resistance thermal noise. The extraction method of modeling parameter utilized by Y-parameter analysis on the proposed small-signal equivalent circuit is demonstrated in this paper. Excellent agreement between simulated and measured noise data is obtained at different temperatures.

Citation


Xiang Wang, Yuping Huang, Jun Liu, and Jie Wang, "A Small-Signal Analysis Based Thermal Noise Modeling Method for RF SOI MOSFETs ," Progress In Electromagnetics Research M, Vol. 57, 81-89, 2017.
doi:10.2528/PIERM17030608
http://www.jpier.org/PIERM/pier.php?paper=17030608

References


    1. Lee, B. J., et al., "Effects of gate structures on the RF performance in PD SOI MOSFETs," IEEE Microwave & Wireless Components Letters, Vol. 15, No. 4, 223-225, 2005.
    doi:10.1109/LMWC.2005.845697

    2. Scholten, A. J., L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, "Noise modeling for RF CMOS circuit simulation," IEEE Trans. Electron Devices, Vol. 50, No. 3, 618-632, Mar. 2003.
    doi:10.1109/TED.2003.810480

    3. Smit, G. D. J., et al., "RF-noise modeling in advanced CMOS technologies," IEEE Trans. Electron Devices, Vol. 61, No. 2, 245-254, 2014.
    doi:10.1109/TED.2013.2282960

    4. Mukherjee, C. and C. K. Maiti, "Channel thermal noise modeling and high frequency noise parameters of tri-gate FinFETs," IEEE Physical and Failure Analysis of Integrated Circuits, 732-735, 2013.

    5. Chan, L. H. K., et al., "High-frequency noise modeling of MOSFETs for Ultra low-voltage RF applications," IEEE Transactions on Microwave Theory & Techniques, Vol. 63, No. 1, 141-154, 2015.
    doi:10.1109/TMTT.2014.2371827

    6. Chen, C.-H., M. J. Deen, Y. Cheng, and M. Matloubian, "Extraction of the induced gate noise, channel noise, and their correlation in submicron MOSFETs from RF noise measurements," IEEE Trans. Electron Devices, Vol. 48, No. 12, 2884-2892, Dec. 2001.
    doi:10.1109/16.974722

    7. Antonopoulos, A., et al., "CMOS small-signal and thermal noise modeling at high frequencies," IEEE Trans. Electron Devices, Vol. 460, No. 11, 3726-3733, 2013.
    doi:10.1109/TED.2013.2283511

    8. Chen, C., "Accuracy issues of on-wafer microwave noise measurement," Fluctuation & Noise Letters, Vol. 48, No. 03n04, L281-L303, 2012.

    9. Chalkiadaki, M. A. and C. C. Enz, "RF small-signal and noise modeling including parameter extraction of nanoscale MOSFET from weak to strong inversion," IEEE Transactions on Microwave Theory & Techniques, Vol. 463, No. 7, 1-12, 2015.

    10. Chen, C. H., et al., "Thermal noise modeling of nano-scale MOSFETs for mixed-signal and RF applications," IEEE Custom Integrated Circuits Conference, 1-8, 2013.

    11. Ong, S. N., "High frequency noise modeling of deep-submicron MOSFETs,", Ph.D. Thesis, NTU, 2015, https://repository.ntu.edu.sg/bitstream/handle/10356/63701/High?sequence=1.

    12. Deen, M. J., C.-H. Chen, S. Asgaran, G. A. Rezvani, J. Tao, and Y. Kiyota, "High-frequency noise of modern MOSFETs: Compact modeling and measurement issues," IEEE Trans. Electron Devices, Vol. 53, No. 9, 2062-2081, Sep. 2006.
    doi:10.1109/TED.2006.880370

    13. Ong, S. N., et al., "Substrate-induced noise model and parameter extraction for high-frequency noise modeling of sub-micron MOSFETs," IEEE Transactions on Microwave Theory & Techniques, Vol. 62, No. 9, 1973-1985, 2014.
    doi:10.1109/TMTT.2014.2340375

    14. Adan, A. O., M. Koyanagi, and M. Fukumi, "Physical model of noise mechanisms in SOI and bulk-silicon MOSFETs for RF applications," IEEE Trans. Electron Devices, Vol. 55, No. 3, 872-880, Sep. 2008.
    doi:10.1109/TED.2007.915085

    15. Wang, S. C., et al., "Investigation of temperature-dependent high-frequency noise characteristics for deep-submicrometer bulk and SOI MOSFETs," IEEE Trans. Electron Devices, Vol. 59, No. 3, 551-556, 2012.
    doi:10.1109/TED.2011.2177664

    16. Scholten, A. J., et al., "Noise modeling for RF CMOS circuit simulation," IEEE Trans. Electron Devices, Vol. 50, No. 3, 618-632, 2003.
    doi:10.1109/TED.2003.810480

    17. Jindal, R. P., "Compact noise models for MOSFETs," IEEE Trans. Electron Devices, Vol. 53, No. 9, 2051-2061, 2006.
    doi:10.1109/TED.2006.880368

    18. Knoblinger, G., P. Klein, and H. Tiebout, "A new model for thermal channel noise of deep-submicron MOSFETs and its application in RF-CMOS design," IEEE Journal of Solid-State Circuits, Vol. 36, No. 5, 831-837, 2001.
    doi:10.1109/4.918922

    19. Ickjin, K., J. Minkyu, L. Kwyro, and S. Hyungcheol, "A simple and analytical parameter-extraction method of a microwave MOSFET," IEEE Transactions on Microwave Theory & Techniques, Vol. 50, No. 6, 1503-1509, Jun. 2002.
    doi:10.1109/TMTT.2002.1006411

    20. Venkataraman, S., et al., "Cryogenic small signal operation of 0.18 μm MOSFETs," 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 52-55, 2007.
    doi:10.1109/SMIC.2007.322767

    21. Chen, S., et al., "Cryogenic and high temperature performance of 4H-SiC power MOSFETs," IEEE Applied Power Electronics Conference & Exposition, 207-210, 2013.

    22. Scholten, A. J., et al., "Accurate thermal noise model for deep-submicron CMOS," IEDM Tech. Dig., 155-158, Dec. 1999.

    23. Tsividis, Y., Operation and Modeling of the MOS Transistor, 2nd Ed., WCB/McGraw-Hill, Boston, 1999.

    24. Chen, C. H. and M. J. Deen, "High frequency noise of MOSFETs I modeling," Solid-State Electron, Vol. 42, 2069-81, 1998.
    doi:10.1016/S0038-1101(98)00192-0

    25. Jeon, J., J. D. Lee, B.-G. Park, and H. Shin, "An analytical channel thermal noise model for deep-submicron MOSFETs with short channel effects," Solid-State Electron, Vol. 51, 1034-8, 2007.
    doi:10.1016/j.sse.2007.05.004

    26. Han, K., H. Shin, and K. Lee, "Analytical drain thermal noise current model valid for deep submicron MOSFETs," IEEE Trans. Electron Devices, Vol. 51, No. 2, 261-9, 2004.
    doi:10.1109/TED.2003.821708

    27. Scholten, A. J., et al., "Accurate thermal noise model for deep-submicron CMOS," IEDM Tech. Dig., 155-158, Dec. 1999.

    28. Chen, C.-H. and M. J. Deen, "Channel noise modeling of deep submicron MOSFETs," IEEE Trans. Electron Devices, Vol. 49, No. 8, 1484-1487, Aug. 2002.
    doi:10.1109/TED.2002.801229

    29. Ong, S. N., et al., "Impact of velocity saturation and hot carrier effects on channel thermal noise model of deep sub-micronMOSFETs," Solid State Electron, Vol. 72, 8-11, 2012.
    doi:10.1016/j.sse.2012.02.008

    30. Van Der Ziel, A., Noise in Solid State Devices and Circuits, Wiley, New York, NY, USA, 1986.

    31. Shoji, M., "Analysis of high frequency thermal noise of enhancement mode MOS field-effect transistors," IEEE Trans. Electron Devices, Vol. 13, No. 6, 520-524, Jun. 1966.
    doi:10.1109/T-ED.1966.15724

    32. Jindal, R. P., "Distributed substrate resistance noise in fine line NMOS field effect transistors," IEEE Trans. Electron Devices, Vol. 32, No. 11, 2450-2453, Nov. 1985.
    doi:10.1109/T-ED.1985.22294

    33. Nyquist, H., "Thermal agitation of electric charge in conductors," Phys. Rev., Vol. 32, No. 1, 110-113, Jul. 1928.
    doi:10.1103/PhysRev.32.110

    34. Thornber, K. K., "Resistive-gate-induced thermal noise in IGFET’s," IEEE J. Solid-State Circuits, Vol. 16, No. 4, 414-415, Aug. 1981.
    doi:10.1109/JSSC.1981.1051611

    35. Jindal, R. P., "Noise associated with distributed resistance of MOSFET gate structures in integrated circuits," IEEE Trans. Electron Devices, Vol. 31, No. 10, 1505-1509, Oct. 1984.
    doi:10.1109/T-ED.1984.21741

    36. Razavi, B., R. H. Yan, and K. F. Lee, "Impact of distributed gate resistance on the performance of MOS devices," IEEE Trans. Circuits Syst. I, Vol. 41, 750-754, 1994.
    doi:10.1109/81.331530

    37. Dambrine, G., H. Happy, F. Danneville, and A. Cappy, "A new method for on wafer noise measurement," IEEE Transactions on Microwave Theory & Techniques, Vol. 41, No. 3, 375-381, Mar. 1993.
    doi:10.1109/22.223734