Vol. 58
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-27
Characteristic Analysis of Phase Glint in InSAR Image Processing
By
Progress In Electromagnetics Research M, Vol. 58, 43-55, 2017
Abstract
This paper investigates the phase glint problem involved in interferometric synthetic aperture radar (InSAR) image processing, which refers to the multiple scatterer interference of a single pixel, and studies the distribution of interferometric phase in the case of double scatterer interference. It is found that the value range of the observed interferometric phase is related to several factors including the complex scattering coefficient ratio and interferometric phase difference between the elementary scatterers, and no matter what values of interferometric phases of elementary scatterers are taken, the dynamic range of interferometric phase of phase glintis always. This paper also briefly analyzes the impact of phase glint on classical InSAR image processing and man-made target height retrieval, and it is concluded that the phase glint will induce significant height estimating error. Simulation and real data results verify the conclusion.
Citation
Jing-Ke Zhang Dahai Dai Zong-Feng Qi Yong-Hu Zeng Liandong Wang , "Characteristic Analysis of Phase Glint in InSAR Image Processing," Progress In Electromagnetics Research M, Vol. 58, 43-55, 2017.
doi:10.2528/PIERM17031601
http://www.jpier.org/PIERM/pier.php?paper=17031601
References

1. Cumming, I. G. and F. K. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation, Artech House, Norwood, MA, 2005.

2. Henke, D., et al., "Moving-target tracking in single-channel wide-beam SAR," IEEE Trans. on Geosci. Remote Sens., Vol. 50, No. 11, 4735-4747, 2012.
doi:10.1109/TGRS.2012.2191561

3. Mouche, A. A., et al., "On the use of doppler shift for sea surface wind retrieval from SAR," IEEE Trans. on Geosci. Remote Sens., Vol. 50, No. 7, 2901-2909, 2012.
doi:10.1109/TGRS.2011.2174998

4. Zhou, J. X., et al., "Automatic target recognition of SAR imagesbased on global scattering center model," IEEE Trans. on Geosci. Remote Sens., 3713-3729, 2011.

5. Papson, S. and R. M. Narayanan, "Classification via the shadow region in SAR imagery," IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, No. 2, 969-980, 2012.
doi:10.1109/TAES.2012.6178042

6. Dabboor, M., et al., "An unsupervised classification approach for polarimetric SAR data based on the chernoff distance for complex wishart distribution," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 7, 4200-4213, 2013.
doi:10.1109/TGRS.2012.2227755

7. Zhu, X. X. and R. Bamler, "Tomographic SAR inversion by L1-norm regularization - The Compressive Sensing Approach," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3839-3846, 2010.
doi:10.1109/TGRS.2010.2048117

8. Xing, S. Q., et al., "Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 6, 3694-3705, 2013.
doi:10.1109/TGRS.2012.2220145

9. Rosen, P. A., et al., "Synthetic aperture radar interferometry," Proc. IEEE, Vol. 88, No. 3, 333-382, 2000.
doi:10.1109/5.838084

10. Berardino, P., et al., "A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 11, 2375-2383, 2002.
doi:10.1109/TGRS.2002.803792

11. Cloude, S. R. and K. P. Papathanassiou, "Polarimetric SAR interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 5, 1551-1565, 1998.
doi:10.1109/36.718859

12. Papathanassiou, K. P. and S. R. Cloude, "Single baseline polarimetric SAR interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 11, 2352-2363, 2001.
doi:10.1109/36.964971

13. Zhu, X. X. and R. Bamler, "Demonstration of super-resolution for tomographic SAR imaging in urban environment," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 8, 3150-3157, 2012.
doi:10.1109/TGRS.2011.2177843

14. Austin, C. D. and R. L. Moses, "IFSAr processing for 3D target reconstruction," Algorithms for Synthetic Aperture Radar Imagery XII, SPIE Defense and Security Symposium, Orlando, 2005.

15. Austin, C. D. and R. L. Moses, "Interferometric synthetic aperture radar detection and estimation based 3D image reconstruction," Algorithms for Synthetic Aperture Radar Imagery XIII, SPIE Defense and Security Symposium, Orlando, 2006.

16. Xing, S. Q., "Study on the 3D imaging of manmade target based on polarimetric radar," China National University of Defense Technology, 2013.

17. Pauciullo, A., et al., "Detection of double scatterers in SAR tomography," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 9, 3567-3586, 2012.
doi:10.1109/TGRS.2012.2183002

18. Lombardini, F. and M. Pardini, "Superresolution differential tomography: Experiments on identification of multiple scatterers in spaceborne SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 4, 1117-1129, 2012.
doi:10.1109/TGRS.2011.2164925

19. Burrows, M. L., "Two-dimensional ESPRIT with tracking for radar imaging and feature extraction," IEEE Trans. Antenna Propagat., Vol. 52, No. 2, 524-532, 2004.
doi:10.1109/TAP.2003.822411