Vol. 59

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Investigation of a Metamaterial Absorber by Using Reflection Theory Model

By Cheng Yang, Han Xiong, and Xiao Pan Li
Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017


Metamaterial absorber (MMA), as a kind of new-style artificial absorption material, has been extensively researched and discussed. Currently, however, the research focuses mainly on the development and application of the novel structure MMA, and only little work is aimed at the physical mechanism of the MMA. In order to deeply understand the absorption mechanism, in this paper, the numerical simulation results of an MMA are given. Then, based on the reflection theory modal, the numerical simulation results are well discussed and explained in detail. It is found that the theoretical results agree well with that of the simulation, which suggests that the reflection theory modal is effective for analyzing the absorption mechanism of the MMA. The main contributions of this paper are to quantitatively discuss and explain the absorption mechanism of the MMA by using the reflection theory and thus offer a consultation in design and fabrication of the advanced MMA for engineers.


Cheng Yang, Han Xiong, and Xiao Pan Li, "Investigation of a Metamaterial Absorber by Using Reflection Theory Model," Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017.


    1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.

    2. Parazzoli, C. G., R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett., Vol. 90, 2003.

    3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 2000.

    4. Schurig, D. J., J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

    5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.

    6. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 2002.

    7. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, 10-112, 2009.

    8. Niesler, F. B. P., J. K. Gansel, S. Fischbach, and Wegener, "Metamaterial metal-based bolometers," Appl. Phys. Lett., Vol. 100, 2012.

    9. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, 98-120, 2012.

    10. Marques, R., J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett., Vol. 89, 2002.

    11. Wen, Q. Y., H.W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 2009.

    12. Shen, X. P., T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, 2011.

    13. Li, L., Y. Yang, and C. H. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, 2011.

    14. Shen, X. P., Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation," Appl. Phys. Lett., Vol. 101, No. 15, 2012.

    15. Sun, L. K., H. F. Cheng, Y. J. Zhou, and J. Wang, "Improvement on the wave absorbing property of a lossy frequency selective surface absorber using a magnetic substrate," Chin. Phys. B, Vol. 21, 2012.

    16. Zhang, H. B., L. W. Deng, P. H. Zhou, L. Zhang, D. M. Cheng, H. Y. Chen, D. F. Liang, and L. J. Deng, "Low frequency needlepoint-shape metamaterial absorber based on magnetic medium," J. Appl. Phys., Vol. 113, 2013.

    17. Xu, Y. Q., P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, "A wide-angle planar metamaterial absorber based on split ring resonator coupling," J. Appl. Phys., Vol. 110, 2011.

    18. Kim, J., R. Soref, and W. R. Buchwald, "Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial," Opt. Express, Vol. 18, 17997-18002, 2010.

    19. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.

    20. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano, Vol. 5, 4641-4647, 2011.

    21. Wang, J., Y. T. Chen, J. M. Hao, M. Yan, and M. Qiu, "Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared," J. Appl. Phys., Vol. 109, 2011.

    22. Dai, L. and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express, Vol. 17, 20502-20504, 2009.

    23. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat. Commun., Vol. 2, 2011.

    24. Lin, C. H., R. L. Chern, and H. Y. Lin, "Polarization-independent broad-band nearly perfect absorbers in the visible regime," Opt. Express, Vol. 19, 415-424, 2011.

    25. Han, Y., W. Q. Che, C. Christopoulos, and Y. M. Chang, "Investigation of thin and broadband capacitive surface-based absorber by the impedance analysis method," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, 22-26, 2015.

    26. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber," AIP Adv., Vol. 4, 2014.

    27. Xu, X. H., G. M.Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, "Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber," Phys. Rev. B, Vol. 86, 2012.

    28. Chen, H. T., "Interference theory of metamaterial perfect absorbers," Opt. Express, Vol. 20, 7165-7172, 2012.

    29. Kong, H., G. Li, Z. Jin, G. Ma, Z. Zhang, and C. Zhang, "Polarization-independent metamaterial absorber for terahertz frequency," Int. J. Infrared Milli. Waves, Vol. 33, 649-656, 2012.

    30. Grant, J., Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, "Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett., Vol. 36, 3476-3478, 2011.

    31. Huang, L., D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, "Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers," Appl. Phys. Lett., Vol. 101, 101-102, 2012.

    32. Zhang, Z. H., Z. P. Wang, and L. H. Wang, "Design principle of single- or double-layer wave-absorbers containing left-handed materials," Mater. Des., Vol. 30, 3908-3912, 2009.