Vol. 59

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-08-05

Investigation of a Metamaterial Absorber by Using Reflection Theory Model

By Cheng Yang, Han Xiong, and Xiao Pan Li
Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017
doi:10.2528/PIERM17033102

Abstract

Metamaterial absorber (MMA), as a kind of new-style artificial absorption material, has been extensively researched and discussed. Currently, however, the research focuses mainly on the development and application of the novel structure MMA, and only little work is aimed at the physical mechanism of the MMA. In order to deeply understand the absorption mechanism, in this paper, the numerical simulation results of an MMA are given. Then, based on the reflection theory modal, the numerical simulation results are well discussed and explained in detail. It is found that the theoretical results agree well with that of the simulation, which suggests that the reflection theory modal is effective for analyzing the absorption mechanism of the MMA. The main contributions of this paper are to quantitatively discuss and explain the absorption mechanism of the MMA by using the reflection theory and thus offer a consultation in design and fabrication of the advanced MMA for engineers.

Citation


Cheng Yang, Han Xiong, and Xiao Pan Li, "Investigation of a Metamaterial Absorber by Using Reflection Theory Model," Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017.
doi:10.2528/PIERM17033102
http://www.jpier.org/PIERM/pier.php?paper=17033102

References


    1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    2. Parazzoli, C. G., R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett., Vol. 90, 2003.
    doi:10.1103/PhysRevLett.90.107401

    3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 2000.
    doi:10.1103/PhysRevLett.85.3966

    4. Schurig, D. J., J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    6. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 2002.
    doi:10.1103/PhysRevLett.89.213902

    7. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, 10-112, 2009.
    doi:10.1126/science.1166332

    8. Niesler, F. B. P., J. K. Gansel, S. Fischbach, and Wegener, "Metamaterial metal-based bolometers," Appl. Phys. Lett., Vol. 100, 2012.
    doi:10.1063/1.4714741

    9. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, 98-120, 2012.

    10. Marques, R., J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett., Vol. 89, 2002.
    doi:10.1103/PhysRevLett.89.183901

    11. Wen, Q. Y., H.W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 2009.

    12. Shen, X. P., T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, 2011.

    13. Li, L., Y. Yang, and C. H. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, 2011.

    14. Shen, X. P., Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation," Appl. Phys. Lett., Vol. 101, No. 15, 2012.
    doi:10.1063/1.4757879

    15. Sun, L. K., H. F. Cheng, Y. J. Zhou, and J. Wang, "Improvement on the wave absorbing property of a lossy frequency selective surface absorber using a magnetic substrate," Chin. Phys. B, Vol. 21, 2012.

    16. Zhang, H. B., L. W. Deng, P. H. Zhou, L. Zhang, D. M. Cheng, H. Y. Chen, D. F. Liang, and L. J. Deng, "Low frequency needlepoint-shape metamaterial absorber based on magnetic medium," J. Appl. Phys., Vol. 113, 2013.
    doi:10.1063/1.4801906

    17. Xu, Y. Q., P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, "A wide-angle planar metamaterial absorber based on split ring resonator coupling," J. Appl. Phys., Vol. 110, 2011.

    18. Kim, J., R. Soref, and W. R. Buchwald, "Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial," Opt. Express, Vol. 18, 17997-18002, 2010.
    doi:10.1364/OE.18.017997

    19. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.
    doi:10.1021/nl9041033

    20. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano, Vol. 5, 4641-4647, 2011.
    doi:10.1021/nn2004603

    21. Wang, J., Y. T. Chen, J. M. Hao, M. Yan, and M. Qiu, "Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared," J. Appl. Phys., Vol. 109, 2011.

    22. Dai, L. and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express, Vol. 17, 20502-20504, 2009.
    doi:10.1364/OE.17.020502

    23. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat. Commun., Vol. 2, 2011.

    24. Lin, C. H., R. L. Chern, and H. Y. Lin, "Polarization-independent broad-band nearly perfect absorbers in the visible regime," Opt. Express, Vol. 19, 415-424, 2011.
    doi:10.1364/OE.19.000415

    25. Han, Y., W. Q. Che, C. Christopoulos, and Y. M. Chang, "Investigation of thin and broadband capacitive surface-based absorber by the impedance analysis method," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, 22-26, 2015.
    doi:10.1109/TEMC.2014.2358686

    26. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber," AIP Adv., Vol. 4, 2014.

    27. Xu, X. H., G. M.Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, "Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber," Phys. Rev. B, Vol. 86, 2012.
    doi:10.1103/PhysRevB.86.155417

    28. Chen, H. T., "Interference theory of metamaterial perfect absorbers," Opt. Express, Vol. 20, 7165-7172, 2012.
    doi:10.1364/OE.20.007165

    29. Kong, H., G. Li, Z. Jin, G. Ma, Z. Zhang, and C. Zhang, "Polarization-independent metamaterial absorber for terahertz frequency," Int. J. Infrared Milli. Waves, Vol. 33, 649-656, 2012.
    doi:10.1007/s10762-012-9906-x

    30. Grant, J., Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, "Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett., Vol. 36, 3476-3478, 2011.
    doi:10.1364/OL.36.003476

    31. Huang, L., D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, "Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers," Appl. Phys. Lett., Vol. 101, 101-102, 2012.

    32. Zhang, Z. H., Z. P. Wang, and L. H. Wang, "Design principle of single- or double-layer wave-absorbers containing left-handed materials," Mater. Des., Vol. 30, 3908-3912, 2009.
    doi:10.1016/j.matdes.2009.03.021