Vol. 57
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-11
Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure
By
Progress In Electromagnetics Research M, Vol. 57, 119-128, 2017
Abstract
A new architecture for a low profile miniaturized frequency selective surface based on complementary structure capable of providing a high angular stable performance is proposed. The proposed FSS is composed of an array of convoluted cross dipoles and its complementary slots pattern that is separated by a thin dielectric substrate. An equivalent circuit model for this FSS is presented to provide a deep insight into the mechanism of reducing the unit size by shifting and lengthening the dipoles. With the use of this method, the FSS unit cell size has been significantly reduced to only 0.0085λ×0.0085λ, and the thickness is 0.000093λ, where λ represents the resonant wavelength in free space. Moreover, the proposed FSS achieves good stability in the scope of incidence angles of 86 degrees for both TE and TM polarizations. Besides, the length of the dipoles can tune the resonant frequency.
Citation
Wenxing Li, and Yuanyuan Li, "Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure," Progress In Electromagnetics Research M, Vol. 57, 119-128, 2017.
doi:10.2528/PIERM17042602
References

1. Ben, A., Frequency Selective Surface - Theory and Design, Vol. 319, 315, A Wiley-Interscience Publication, 2000.

2. Farahat, A. E., K. F. A. Hussein, and N. M. El-Minyawi, "Spatial filters for linearly polarized antennas using free standing frequency selective surface," Progress In Electromagnetics Research M, Vol. 2, 167-188, 2008.
doi:10.2528/PIERM08041606

3. Chen, Q. and Y. Fu, "A planar stealthy antenna radome using absorptive frequency selective surface," Microwave and Optical Technology Letters, Vol. 56, 1788-1792, 2014.
doi:10.1002/mop.28442

4. Edalati, A. and K. Sarabandi, "Reflectarray antenna based on grounded loop-wire miniaturised-element frequency selective surfaces," IET Microwaves, Antennas & Propagation, Vol. 8, 973-979, 2014.
doi:10.1049/iet-map.2013.0432

5. Chatterjee, A. and S. Parui, "Performance enhancement of a dual-band monopole antenna by using a frequency selective surface-based corner reflector," IEEE Transactions on Antennas and Propagation, Vol. 1, 2016.

6. Gangwar, D., S. Das, R. L. Yadava, and B. K. Kanaujia, "Circularly polarized inverted stacked high gain antenna with frequency selective surface," Microwave and Optical Technology Letters, Vol. 58, 732-740, 2016.
doi:10.1002/mop.29656

7. Wang, H., P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, et al. "Broadband tunability of polarization-insensitive absorber based on frequency selective surface," Sci. Rep., Vol. 6, 23081, 2016.
doi:10.1038/srep23081

8. Oraizi, H. and M. Afsahi, "Design of metamaterial multilayer structures as frequency selective surfaces," Progress In Electromagnetics Research C, Vol. 6, 115-126, 2009.
doi:10.2528/PIERC09010508

9. Guo, C., H.-J. Sun, and X. Lv, "A novel dualband frequency selective surface with periodic cell perturbation," Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008.
doi:10.2528/PIERB08071302

10. Li, W., C. Wang, Y. Zhang, and Y. Li, "A miniaturized frequency selective surface based on square loop aperture element," International Journal of Antennas and Propagation, Vol. 2014, 1-6, 2014.

11. Zhao, P.-C., Z.-Y. Zong, W. Wu, and D.-G. Fang, "A convoluted structure for miniaturized frequency selective surface and its equivalent circuit for optimization design," IEEE Transactions on Antennas and Propagation, Vol. 64, 2963-2970, 2016.
doi:10.1109/TAP.2016.2565694

12. Yan, M., S. Qu, J. Wang, H. Ma, J. Zhang, W. Wang, et al. "A single layer ultra-miniaturized FSS operating in VHF," Photonics and Nanostructures - Fundamentals and Applications, Vol. 17, 1-9, Nov. 2015.
doi:10.1016/j.photonics.2015.08.002

13. Yu, Y.-M., C.-N. Chiu, Y.-P. Chiou, and T.-L. Wu, "A novel 2.5-dimensional ultraminiaturized-element frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 62, 3657-3663, 2014.
doi:10.1109/TAP.2014.2321153

14. Hussain, T., Q. Cao, J. Kayani, and I. Majid, "Miniaturization of frequency selective surfaces using 2.5-dimensional knitted structures: Design and synthesis," IEEE Transactions on Antennas and Propagation, 1, 2017.

15. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "Angularly stable frequency selective surface with miniaturized unit cell," IEEE Microwave and Wireless Components Letters, Vol. 25, 454-456, Jul. 2015.
doi:10.1109/LMWC.2015.2429126

16. Lin, B.-Q., S.-H. Zhao, X.-Y. Da, Y.-W. Fang, J.-J. Ma, and Z.-H. Zhu, "Design of a miniaturized-element frequency selective surface," Microwave and Optical Technology Letters, Vol. 57, 2572-2576, 2015.
doi:10.1002/mop.29395

17. Liu, H. L., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas and Propagation, Vol. 57, 2732-2738, 2009.
doi:10.1109/TAP.2009.2027174

18. Al-Joumayly, M. A. and N. Behdad, "Low-profile, highly-selective, dual-band frequency selective surfaces with closely spaced bands of operation," IEEE Transactions on Antennas and Propagation, Vol. 58, 4042-4050, 2010.
doi:10.1109/TAP.2010.2078478

19. Momeni Hasan Abadi, S. M. A., L. Meng, and N. Behdad, "Harmonic-suppressed miniaturized-element frequency selective surfaces with higher order bandpass responses," IEEE Transactions on Antennas and Propagation, Vol. 62, 2562-2571, 2014.
doi:10.1109/TAP.2014.2303822