Vol. 61
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-25
Compact Dual-Band Bandpass Filter Based on Substrate Integrated Waveguide Cavity with High Selectivity
By
Progress In Electromagnetics Research M, Vol. 61, 147-158, 2017
Abstract
A compact dual-band bandpass filter implemented with an embedded coplanar waveguide (ECPW) resonator and a capacitively loaded resonator (CLR) in substrate integrated waveguide (SIW) cavity is presented and analyzed in this paper. Three transmission zeroes (TZs), of which two are located in the middle of the two passbands and one located in the upper stopband, are obtained to improve the inner-band isolation and the selectivity of the filter. The center frequencies and bandwidths of the two passbands can be easily tuned by changing the geometrical parameters of the two resonators. The proposed dual-band SIW filter is demonstrated with center frequencies located at 8.41/14.29 GHz. The measured insertion loss is -1.28/-1.91 dB with the corresponding fractional bandwidth (FBW) of 21.2%/7.3%. The measured results are in good agreement with the simulated ones.
Citation
Jing Li, Guanglin Li, Zhihua Wei, Guoqing Xu, Zongde Ju, and Jie Huang, "Compact Dual-Band Bandpass Filter Based on Substrate Integrated Waveguide Cavity with High Selectivity," Progress In Electromagnetics Research M, Vol. 61, 147-158, 2017.
doi:10.2528/PIERM17050402
References

1. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. Microwave Theory Tech., Vol. 51, 593-596, Feb. 2003.
doi:10.1109/TMTT.2002.807820

2. Chen, R. S., S. W. Wong, L. Zhu, and Q. X. Chu, "Wideband bandpass filter using U-slotted substrate integrated waveguide (SIW) cavities," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 1, Jan. 2015.

3. Wei, Z. H., J. Huang, Y. H. Geng, J. Li, and G. Q. Xu, "Compact broadband bandpass filter on quarter-mode substrate integrated waveguide loaded with CRLH interdigital slots," Progress In Electromagnetics Research Letters, Vol. 59, 85-91, 2016.
doi:10.2528/PIERL16030407

4. Li, X., Z. H. Shao, and C. J. You, "X-band substrate integrated waveguide bandpass filter using novel defected ground structure cell," Microwave and Optical Technology Letters, Vol. 57, No. 5, May 2015.

5. Dong, K. D., J. Y. Mo, Y. H. He, Z. W. Ma, and X. X. Yang, "Design of a millimeter-wave dual-band bandpass filter using SIW dual-mode cavities," 2016 IEEE MTT-S International Wireless Symposium (IWS), 14-16, Mar. 2016.

6. Wu, Y. L., Y. Q. Chen, L. X. Jiao, Y. A. Liu, and Z. Chassemlooy, "Dual-band dual-mode substrate integrated waveguide filters with independently reconfigurable TE101 resonant mode," Scientific Reports,, Vol. 6, 31922, 2016.
doi:10.1038/srep31922

7. Xu, X., J. P. Wang, G. Zhang, and J. X. Chen, "Design of balanced dual-band bandpass filter based on substrate integrated waveguide," Electronics Letters, Vol. 49, No. 20, 1278-1280, Sept. 26, 2013.
doi:10.1049/el.2013.2371

8. Rezaee, M. and A. R. Attari, "A novel dual mode dual band SIW filter," 2014 44th Microwave Conference (EuMC), European, Oct. 6-9, 2014.

9. Wei, F., P. Y. Qin, Y. J. Guo, C. Ding, and X. W. Shi, "Compact balanced dual- and tri-band BPFs based on coupled complementary split-ring resonators (C-CRSS)," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 2, Feb. 2016.
doi:10.1109/LMWC.2016.2517125

10. Shen, W., W. Y. Yin, and X. W. Sun, "Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 8, Aug. 2011.
doi:10.1109/LMWC.2011.2158412

11. Nocella, V., L. Pelliccia, C. Tomassoni, and R. Sorrentino, "Miniaturized dual-band waveguide filters using TM dielectric-loaded dual-mode cavities," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 5, May 2016.
doi:10.1109/LMWC.2016.2549181

12. Zhao, Q., Z. L. Chen, J. Huang, G. L. Li, Z. H. Zhang, and W. Dang, "Compact dual-band bandpass filter based on composite right/left-handed substrate integrated waveguide loaded by complementary split-ring resonators defected ground structure," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 14, 1807-1814, 2014.
doi:10.1080/09205071.2014.944623

13. Shen, Y. J., H. Wang, W. Kang, and W. Wu, "Dual-band SIW differential bandpass filter with improved common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 2, Feb. 2015.
doi:10.1109/LMWC.2014.2382683

14. Chen, X. P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with chebyshev and quasi-elliptic responses," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, Dec. 2007.

15. Xu, S. S., K. X. Ma, F. Y. Meng, and K. S. Yeo, "Novel defected ground structure and two-side loading scheme for miniaturized dual-band SIW bandpass filter designs," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 4, Apr. 2015.

16. Chu, P., W. Hong, L. L. Dai, H. J. Tang, J. X. Chen, Z. C. Hao, X. C. Zhu, and K. Wu, "A planar bandpass filter implemented with a hybrid structure of substrate integrated waveguide and coplanar waveguide," IEEE Trans. Microwave Theory Tech., Vol. 62, No. 2, Feb. 2014.
doi:10.1109/TMTT.2013.2294861

17. Gong, K., W. Hong, Y. Zhang, P. Chen, and C. J. You, "Substrate integrated waveguide quasi-elliptic filters with controllable electric and magnetic mixed coupling," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 10, 3071-3078, 2012.
doi:10.1109/TMTT.2012.2209437

18. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 1st Ed., Wiley, New York, NY, USA, 2001.
doi:10.1002/0471221619

19. Chen, X. P., W. Hong, T. J. Cui, J. X. Chen, and K. Wu, "Substrate integrated waveguide (SIW) linear phase filter," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 787-789, 2005.
doi:10.1109/LMWC.2005.859021

20. Rosenberg, U., "New ``planar'' waveguide cavity elliptic function filters," European Microwave Conference, Vol. 1, 524-527, 1995.

21. Liao, C. K., P. L. Chi, and C. Y. Chang, "Microstrip realization of generalized Chebyshev filters with box-like coupling schemes," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 1, 147-153, 2007.
doi:10.1109/TMTT.2006.888580

22. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filter," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

23. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, McGraw-Hill, New York, NY, USA, 1964.

24. Wu, Y. D., G. H. Li, W. Yang, and T. Mou, "A novel dual-band SIW filter with high selectivity," Progress In Electromagnetics Research Letters, Vol. 60, 81-88, 2016.
doi:10.2528/PIERL16032401