Vol. 58
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-04
Design of Nonuniform Metallic Anechoic Chamber for Radiation Pattern Measurement
By
Progress In Electromagnetics Research M, Vol. 58, 65-72, 2017
Abstract
Antenna pattern measurement is an essential step in antenna qualification which should be done in anechoic chambers. The common method for anechoic chamber construction is to cover all inside walls by the electromagnetic absorbers. In this paper, a new method is presented to design a fully metallic chamber by controlling the electromagnetic inside the chamber and guiding them to a piece of absorber. Therefore, a desirable quiet zone is formed inside the chamber while a great reduction of absorber usage is achieved. The proposed chamber is analyzed using ray tracing method, and its performance is evaluated by simulation that shows the practicality of the proposed chamber.
Citation
Ali Farahbakhsh Mohammad Khalaj-Amirhosseini , "Design of Nonuniform Metallic Anechoic Chamber for Radiation Pattern Measurement," Progress In Electromagnetics Research M, Vol. 58, 65-72, 2017.
doi:10.2528/PIERM17050701
http://www.jpier.org/PIERM/pier.php?paper=17050701
References

1. Emerson, W. H., "Electromagnetic wave absorbers and anechoic chambers through the years," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 4, July 1973.
doi:10.1109/TAP.1973.1140517

2. Kineros, C. and V. Ungvichian, "A low cost conversion of semianechoic chamber to fully anechoic chamber for RF antenna measurements," 2003 IEEE International Symposium on Electromagnetic Compatibility, USA, 2003.

3. Bornkessel, C. and W. Wiesbeck, "Numerical analysis and optimization of anechoic chambers for EMC testing," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 499-506, August 1996.
doi:10.1109/15.536082

4. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
doi:10.2528/PIERB08062902

5. Hemming, L. H., Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide, IEEE Press, 2002.
doi:10.1109/9780470544501

6. Emerson, W. H., , U.S. Patent No. 3,308,463, March 1967, Anechoic Chamber.

7. Hemming, L. H., , U.S. Patent No. 4,507,660, March 26, 1985, Anechoic Chamber.

8. Sanchez, G. A., , U.S. Patent No. 5,631,661, May 20, 1997, Geometrically Optimized Anechoic Chamber.

9. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
doi:10.2528/PIERB09122102

10. Nornikman, H., M. F. B. A. Malek, P. J. Soh, A. A. A.-H. Azremi, F. H. Wee, and A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.2528/PIER10041003

11. Iqbal, M. N., M. F. B. A. Malek, Y. S. Lee, L. Zahid, M. I. Hussain, M. F. B. Haji Abd Malek, N. F. Mohamed Yusof, N. Saudin, and N. A. Abu Talib, "A simple technique for improving the anechoic performance of a pyramidal absorber," Progress In Electromagnetics Research M, Vol. 32, 129-143, 2013.
doi:10.2528/PIERM13061607

12. Farahbakhsh, A. and M. Khalaj-amirhosseini, "Using metallic ellipsoid anechoic chamber to reduce the absorber usage," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 2015.
doi:10.1109/TAP.2015.2448791

13. Farahbakhsh, A. and M. Khalaj-amirhosseini, "Metallic spherical anechoic chamber for antenna pattern measurement," Chinese Physics B, Vol. 25, No. 8, 2016.
doi:10.1088/1674-1056/25/8/088401

14. Gielis, J., "A generic geometric transformation that unifies a wide range of natural and abstract shapes," American Journal of Botany, Vol. 90, No. 3, 333-338, 2003.
doi:10.3732/ajb.90.3.333

15. Farahbakhsh, A., S. Tavakoli, and A. Seifolhosseini, "Enhancement of genetic algorithm and ant colony optimization techniques using Fuzzy systems," IEEE International Advance Computing Conference, India, March 2009.

16. COMSOL Multiphysics®Modeling Software, , 2014.

17. Togawa, H., K. Hatakeyama, and K. Yamauchi, "Reflectivity measurements in anechoic chambers in the microwave to millimeter range," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 2, 312-319, May 2005.
doi:10.1109/TEMC.2005.847394

18. Appel-Hansen, J., "Reflectivity level of radio anechoic chambers," IEEE Trans. Antennas Propag., Vol. 21, No. 4, 490-498, 1973.
doi:10.1109/TAP.1973.1140524

19. Chung, B.-K., C. H. The, and H.-T. Chuah, "Modeling of anechoic chamber using a beam-tracing technique," Progress In Electromagnetics Research, Vol. 49, 23-38, 2004.
doi:10.2528/PIER04020601

20. WR-75 Standard Gain Horn Antenna Operates From 10 GHz to 15 GHz with a Normal 10 dB Gain SMA Female Input Connector, Pasternack, Technical Data Sheet, 2013.