Vol. 59

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-07-30

An Optimized PLRC-FDTD Model of Wave Propagation in Anisotropic Magnetized Plasma

By Jinchao Ding, Zhiqin Zhao, Yue Yang, Yulang Liu, and Zai-Ping Nie
Progress In Electromagnetics Research M, Vol. 59, 25-31, 2017
doi:10.2528/PIERM17050903

Abstract

Numerical dispersion is the main error source of the finite-difference time-domain (FDTD) method. In this paper, an optimized piecewise linear recursive convolution (PLRC) FDTD method with low numerical dispersion is presented first time for electromagnetic-wave propagation in anisotropic magnetized plasma. An optimized difference item which can achieve better approximation to the partial differential operator from transform domain is induced in this algorithm which decreases numerical dispersion. The item can be regarded as adding a correcting coefficient to conventional central difference format. And it is easy for programming and implementation. Numerical examples of electromagnetic pulse wave propagating in plasma demonstrate that the proposed optimized PLRC-FDTD method can not only reduce the numerical dispersion, but also improve precision, saving computational memory and computational time compared with the conventional PLRC-FDTD method. Same accuracy can be achieved when the spatial mesh size for the optimized PLRC-FDTD method is 2 times coarser as that in the conventional PLRC-FDTD method, corresponding to the computation time consumed in the optimized method is only 1/2 as that in the conventional one.

Citation


Jinchao Ding, Zhiqin Zhao, Yue Yang, Yulang Liu, and Zai-Ping Nie, "An Optimized PLRC-FDTD Model of Wave Propagation in Anisotropic Magnetized Plasma," Progress In Electromagnetics Research M, Vol. 59, 25-31, 2017.
doi:10.2528/PIERM17050903
http://www.jpier.org/PIERM/pier.php?paper=17050903

References


    1. Yee, K., "A numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    2. Namiki, T., "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2003-2007, 1999.
    doi:10.1109/22.795075

    3. Liu, Q., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw Opt. Technol. Lett., Vol. 15, No. 3, 158-165, 1997.
    doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

    4. Krumpholz, M. and L. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 4, 555-571, 1996.
    doi:10.1109/22.491023

    5. Shlager, K. and J. Schneider, "Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 642-653, 2003.
    doi:10.1109/TAP.2003.808532

    6. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 29-34, 1991.
    doi:10.1109/8.64431

    7. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1739-1746, 1998.
    doi:10.1109/8.736632

    8. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photon Technol. Lett., Vol. 21, No. 12, 817-819, 2009.
    doi:10.1109/LPT.2009.2018638

    9. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, 1996.
    doi:10.1109/8.509882

    10. Young, J. L., "A higher order FDTD method for EM propagation in a collisionless cold plasma," IEEE Trans. Antennas Propag., Vol. 44, No. 9, 1283-1289, 1996.
    doi:10.1109/8.535387

    11. Prokopidis, K. P. and T. D. Tsiboukis, "Higher-order FDTD (2, 4) scheme for accurate simulations in lossy dielectrics," Electron. Lett., Vol. 39, No. 11, 835-836, 2003.
    doi:10.1049/el:20030545

    12. Prokopidis, K. P., E. P. Kosmidou, and T. D. Tsiboukis, "An FDTD algorithm for wave propagation in dispersive media using higher-order schemes," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1171-1194, 2004.
    doi:10.1163/1569393042955306

    13. Jung, I., I.-Y. Oh, Y. Hong, and J.-G. Yook, "Optimized higher order 3-D (2, 4) FDTD scheme for isotropic dispersion in plasma," Asia-Pacific Micro Conference Proceed, 2013.

    14. Lee, J. H. and D. K. Kalluri, "Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma," IEEE Trans. Antennas Propag., Vol. 47, No. 7, 1146-1151, 1999.
    doi:10.1109/8.785745

    15. Liu, S., J. Mo, and N. Yuan, "Piecewise linear current density recursive convolution FDTD implementation for anisotropic magnetized plasmas," IEEE Microw Wireless Compon. Lett., Vol. 14, No. 5, 222-224, 2004.
    doi:10.1109/LMWC.2004.827844

    16. Zygiridis, T. T. and T. O. Tsiboukis, "Low-dispersion algorithms based on the higher order (2, 4) FDTD method," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 2004.
    doi:10.1109/TMTT.2004.825695

    17. Fei, X., T. X. Hong, and Z. X. Jing, "3-D optimal finite difference time domain method," Journ. Micro., Vol. 22, No. 5, 7-10, 2006.

    18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, MA, USA, 2005.

    19. Fei, X., T. X. Hong, and Z. X. Jing, "The construction of low-dispersive FDTD on hexagon," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3697-3703, 2005.
    doi:10.1109/TAP.2005.858595