Vol. 58
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-06
Backscattering from Electrically Large Target Above Nonlinear Sea Surface
By
Progress In Electromagnetics Research M, Vol. 58, 107-115, 2017
Abstract
The composite scattering of an electrically large target above nonlinear sea surface is analyzed based on the reciprocity theorem. The two-dimensional nonlinear sea surface is simulated with the Fast Fourier transform (FFT), with which the phase modified two-scale method is utilized to calculate the scattering field of the wind-driven sea surface. The electromagnetic currents of the sea surface, which are excited with plane wave, are calculated with the iterated Kirchhoff approximation (KA).The coupling scattering between the target and the sea surface, which includes the complex scattering matrix of composite scattering, is ingeniously reduced to the integrals involving the target scattering and high order currents of sea surface. A sensitivity analysis is performed for the dependency of the coupling scattering on the target features. The relationship of the full composite scattering model with the sea state is examined, which provides theoretical basis for the target recognition.
Citation
Wei Luo, Yuqi Yang, and Honggang Hao, "Backscattering from Electrically Large Target Above Nonlinear Sea Surface," Progress In Electromagnetics Research M, Vol. 58, 107-115, 2017.
doi:10.2528/PIERM17052101
References

1. Wu, Y. M. and W. C. Chew, "The modern high frequency methods for solving electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 156, 63-82, 2016.
doi:10.2528/PIER15110208

2. Wu, Z.-S., J.-J. Zhang, and L. Zhao, "Composite electromagnetic scattering from the plate target above a one-dimensional sea surface: Taking the diffraction into account," Progress In Electromagnetics Research, Vol. 92, 317-331, 2009.
doi:10.2528/PIER09032902

3. Baussard, A., M. Rochdi, and A. Khenchaf, "PO/Mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

4. Wang, R., L. X. Guo, and Z. B. Zhang, "Scattering from contaminated rough sea surface by iterative physical optics model," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 14, 500-504, 2016.
doi:10.1109/LGRS.2016.2520519

5. Chen, S. Y., E. W. Gill, and W. M. Huang, "A high-frequency surface wave radar ionospheric clutter model for mixed-path propagation with the second-order sea scattering," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5373-5381, 2016.
doi:10.1109/TAP.2016.2618538

6. Nouguier, F., S. T. Grilli, and C. A. Guérin, "Nonlinear ocean wave reconstruction algorithms based on simulated spatiotemporal data acquired by a flash LIDAR camera," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 3, 1761-1771, 2014.
doi:10.1109/TGRS.2013.2254494

7. Nie, D., M. Zhang, and N. Li, "Investigation on microwave polarimetric scattering from two-dimensional wind fetch- and water depth-limited nearshore sea surfaces," Progress In Electromagnetics Research, Vol. 145, 251-261, 2014.
doi:10.2528/PIER14022505

8. Li, X. F. and X. J. Xu, "Scattering and Doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 2, 603-611, 2011.
doi:10.1109/TGRS.2010.2060204

9. Yang, W., Z. Q. Zhao, C. H. Qi, and Z. P. Nie, "Electromagnetic modeling of breaking waves at low grazing angles with adaptive higher order hierarchical Legendre basis functions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 346-352, 2011.
doi:10.1109/TGRS.2010.2052817

10. Luo, H. J., G. D. Yang, Y. H. Wang, J. C. Shi, and Y. Du, "Numerical studies of sea surface scattering with the GMRES-RP method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 5, No. 4, 2064-2073, 2014.

11. Bourlier, C., H. K. Li, and N. Pinel, "Low-grazing angle propagation and scattering above the sea surface in the presence of a duct jointly solved by boundary integral equations," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 667-677, 2015.
doi:10.1109/TAP.2014.2379945

12. Chen, K.-L., K.-S. Chen, Z.-L. Li, and Y. Liu, "Extension and validation of an advanced integral equation model for bistatic scattering from rough surfaces," Progress In Electromagnetics Research, Vol. 152, 59-76, 2015.

13. Pino, M. R., R. J. Burkholder, and F. Obelleiro, "Spectral acceleration of the generalized forward-backward method," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 6, 785-797, 2002.
doi:10.1109/TAP.2002.1017658

14. Zhang, Y., J. Lu, and J. Pacheco, "Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1631-1639, 2005.
doi:10.1109/TAP.2005.846721

15. Guo, L. X. and R. W. Xu, "An efficient multiregion FEM-BIM for composite scattering from an arbitrary dielectric target above dielectric rough sea surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 7, 3885-3896, 2015.
doi:10.1109/TGRS.2014.2386894

16. Qi, C., Z. Zhao, and Z.-P. Nie, "Numerical approach on Doppler spectrum analysis for moving targets above a time-evolving sea surface," Progress In Electromagnetics Research, Vol. 138, 351-365, 2013.
doi:10.2528/PIER13020112

17. Soriano, G., M. Joelson, and M. Saillard, "Doppler spectra from a two-dimensional ocean surface at L-Band," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, 2430-2437, 2006.
doi:10.1109/TGRS.2006.873580

18. Cox, C. and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun glitter," Journal of the Optical Society of America, Vol. 44, No. 11, 838-850, 1954.
doi:10.1364/JOSA.44.000838

19. Chiu, T. and K. Sarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 902-912, 1999.
doi:10.1109/8.774155

20. Zhang, M., W. Luo, G. Luo, C. Wang, and H.-C. Yin, "Composite scattering of ship on sea surface with breaking waves," Progress In Electromagnetics Research, Vol. 123, 263-277, 2012.
doi:10.2528/PIER11100811

21. Luo, W., M. Zhang, P. Zhou, and H. C. Yin, "Analysis of multiple scattering from two-dimensional dielectric sea surface with iterative Kirchhoff approximation," Chinese Physics B, Vol. 19, No. 8, 379-383, 2010.

22. Schroeder, L. C., D. H. Boggs, and G. Dome, "The relationship between wind vector and normalized radar cross section used to derive SEASAT-A satellite scatterometer winds," Journal of Geophysical Research, Vol. 87, No. C5, 3318-3336, 1982.
doi:10.1029/JC087iC05p03318