Vol. 59

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-08-06

The Weakened Weibel Electromagnetic Instability of Ultra-Intense MeV Electron Beams in Multi-Layer Solid Structure

By Leng Liao and Ruiqiang Zhao
Progress In Electromagnetics Research M, Vol. 59, 103-109, 2017
doi:10.2528/PIERM17052204

Abstract

The Weibel instability of intense and collimated MeV fast electron beams in multi-layer structure is investigated. It is found that the electromagnetic instability of fast electron beams can be significantly suppressed by this structure. A strong magnetic field will be created at the interfaces between materials with different resistivities as these fast electrons are injected into this structure. It obstructs the transverse movement of the fast electrons and confines them to propagate along the interfaces. In consequence, the positive feedback loop between magnetic field perturbation and electrons density perturbation is broken, and the Weibel instability is thus weakened. Furthermore, the calculated results for Au/Si multi-layer structure by a hybrid Particle in Cell code have proven this weakening effect on the Weibel instability of intense fast electron beams. Because of the high energy-density delivered by the MeV electrons, these results indicate applications in high-energy physics, such as radiography, fast electron beam focusing, and perhaps fast ignition.

Citation


Leng Liao and Ruiqiang Zhao, "The Weakened Weibel Electromagnetic Instability of Ultra-Intense MeV Electron Beams in Multi-Layer Solid Structure," Progress In Electromagnetics Research M, Vol. 59, 103-109, 2017.
doi:10.2528/PIERM17052204
http://www.jpier.org/PIERM/pier.php?paper=17052204

References


    1. Perry, M. D. and G. Mourou, "Terawatt to petawatt subpicosecond lasers," Science, Vol. 264, 917-924, 1994.
    doi:10.1126/science.264.5161.917

    2. Gibbon, P., Short Pulse Laser Interactions with Matter: An Introduction, College Press, London, 2005.
    doi:10.1142/p116

    3. Park, H. S., et al., "High-energy K alpha radiography using high-intensity, short-pulse lasers," Phys. Plasmas, Vol. 13, 056309, 2006.
    doi:10.1063/1.2178775

    4. Kodama, R., et al., "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature, Vol. 412, 798-802, 2001.
    doi:10.1038/35090525

    5. Atzeni, S. and J. Meyer-tar-Vehn, Inertial Fusion-beam Plasma Interaction, Hydrodynamic, Dense Plasma Physics, Clarendon, Oxford, 2003.

    6. Tabak, M., et al., "Ignition and high-gain with ultrapowerful lasers," Phys. Plasmas, Vol. 1, 1626-1634, 1994.
    doi:10.1063/1.870664

    7. Weibel, E. S., "Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution," Phys. Rev. Lett., Vol. 2, 83-84, 1959.
    doi:10.1103/PhysRevLett.2.83

    8. Green, J. S., et al., "Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas," Phys. Rev. Lett., Vol. 100, 015003, 2008.
    doi:10.1103/PhysRevLett.100.015003

    9. Kodama, R., et al., "Plasma devices to guide and collimate a high density of MeV electrons," Nature, Vol. 432, 1005-1008, 2004.
    doi:10.1038/nature03133

    10. Lancaster, K. L., et al., "Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 1020 W cm(-2)," Phys. Rev. Lett., Vol. 98, 125002, 2007.
    doi:10.1103/PhysRevLett.98.125002

    11. Santos, J. J., et al., "Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics," Phys. Rev. Lett., Vol. 89, 207-213, 2002.
    doi:10.1103/PhysRevLett.89.025001

    12. Sentoku, Y., et al., "Magnetic instability by the relativistic laser pulses in overdense plasmas," Phys. Plasmas, Vol. 7, 689-695, 2000.
    doi:10.1063/1.873853

    13. Stephens, R. B., et al., "K-alpha fluorescence measurement of relativistic electron transport in the context of fast ignition," Phys. Rev. E, Vol. 69, 039901, 2004.
    doi:10.1103/PhysRevE.69.066414

    14. Robinson, A. P. L., M. Sherlock, and P. A. Norreys, "Artificial collimation of fast-electron beams with two laser pulses," Phys. Rev. Lett., Vol. 100, 025002, 2008.
    doi:10.1103/PhysRevLett.100.025002

    15. Bell, A. R. and R. J. Kingham, "Resistive collimation of electron beams in laser-produced plasmas," Phys. Rev. Lett., Vol. 91, 035003, 2003.
    doi:10.1103/PhysRevLett.91.035003

    16. McKenna, P., et al., "Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses," Phys. Rev. Lett., Vol. 106, 185004, 2011.
    doi:10.1103/PhysRevLett.106.185004

    17. Ramakrishna, B., et al., "Laser-driven fast electron collimation in targets with resistivity boundary," Phys. Rev. Lett., Vol. 105, 135001, 2010.
    doi:10.1103/PhysRevLett.105.135001

    18. Mishra, S. K., et al., "Stabilization of beam-weibel instability by equilibrium density ripples," Phys. Plasmas, Vol. 21, 012108, 2014.
    doi:10.1063/1.4862175

    19. Chatterjee, G., et al., "Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays," Phys. Rev. Lett., Vol. 108, 235005, 2012.
    doi:10.1103/PhysRevLett.108.235005

    20. Spitzer, L. and R. Harm, "Transport phenomena in a completely ionized gas," Phys. Rev., Vol. 89, 977-981, 1953.
    doi:10.1103/PhysRev.89.977