Vol. 60
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-28
A Lightweight Robust Indoor Radio Tomographic Imaging Method in Wireless Sensor Networks
By
Progress In Electromagnetics Research M, Vol. 60, 19-31, 2017
Abstract
In recent years, radio tomographic imaging (RTI) is an emerging device-free localization (DFL) technology enabling the localization of people and other objects without requiring them to carry any electronic device. Different from other DFL techniques, the RTI method makes use of the changes of received signal strength (RSS) measured on links of the network to estimate the radio frequency (RF) attenuation field and forms an image of the changed field. This image is then used to infer the locations of targets within the deployed network. However, there still lacks an efficient scheme which can achieve robust location estimation performance with low computational cost. To solve this problem, we propose a lightweight robust RTI approach in this paper. The proposed method not only can reduce the algorithm's storage and computational resource requirements, but also exploits the location information of wireless measurement nodes to improve the accuracy of the localization result, which ensures its robust performance. The effectiveness and robustness of the proposed scheme are demonstrated by experimental results where the proposed algorithm yields substantial improvement for localization performance and complexity.
Citation
Xiao Cao Hongchun Yao Yixian Ge Wei Ke , "A Lightweight Robust Indoor Radio Tomographic Imaging Method in Wireless Sensor Networks," Progress In Electromagnetics Research M, Vol. 60, 19-31, 2017.
doi:10.2528/PIERM17052701
http://www.jpier.org/PIERM/pier.php?paper=17052701
References

1. Gezici, S., "A survey on wireless position estimation," Wireless Personal Communications, Vol. 44, No. 3, 263-282, 2008.
doi:10.1007/s11277-007-9375-z

2. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

3. He, S. N. and S. H. G. Chan, "Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons," IEEE Trans. Surv. Tutor., Vol. 18, No. 1, 466-490, 2016.
doi:10.1109/COMST.2015.2464084

4. Guvenc, I. and C. C. Chong, "A survey on TOA based wireless localization and NLOS mitigation techniques," IEEE Commun. Surveys & Tutorials, Vol. 11, 107-124, 2009.
doi:10.1109/SURV.2009.090308

5. Liu, H., H. Darabi, H. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Trans. Systems, Man, and Cybernetics - Part C, Vol. 37, No. 6, 1067-1080, 2007.
doi:10.1109/TSMCC.2007.905750

6. Patwari, N. and J. Wilson, "RF sensor networks for device-free localization: Measurements, models, and algorithms," Proc. of the IEEE, Vol. 98, No. 11, 1961-1973, 2010.
doi:10.1109/JPROC.2010.2052010

7. Youssef, M., M. Mah, and A. Agrawala, "Challenges: Device-free passive localization for wireless environments," 13th ACM MobiCom, 222-229, 2007.

8. Seifeldin, M., A. Saeed, A. Kosba, A. El-keyi, and M. Youssef, "Nuzzer: A large-scale device-free passive localization system for wireless environments," IEEE Trans. Mob. Comput., Vol. 12, No. 7, 1321-1334, 2013.
doi:10.1109/TMC.2012.106

9. Saeed, A., A. Kosba, and M. Youssef, "Ichnaea: A low-overhead robust WLAN device-free passive localization system," IEEE J. Sel. Topics Signal Process., Vol. 8, No. 1, 5-15, 2014.
doi:10.1109/JSTSP.2013.2287480

10. Sabek, I., M. Youssef, and A. V. Vasilakos, "ACE: An accurate and efficient multi-entity device-Free WLAN localization system," IEEE Trans. Mob. Comput., Vol. 14, No. 2, 261-273, 2015.
doi:10.1109/TMC.2014.2320265

11. Xiao, J., K. Wu, Y. Yi, L. Wang, and L. M. Ni, "Pilot: Passive device-free indoor localization using channel state information," Proc. 33th Int. Conf. Distrib. Comput. Syst., 236-245, 2013.

12. Mager, B., P. Lundrigan, and N. Patwari, "Fingerprint-based device-free localization performance in changing environments," IEEE J. Sel. Areas Commun., Vol. 33, No. 11, 2429-2438, 2015.
doi:10.1109/JSAC.2015.2430515

13. Zhang, D., J. Ma, Q. Chen, and L. Ni, "An RF-based system for tracking transceiver-free objects," Proc. Fifth Annual IEEE International Conference on Pervasive Computing and Communications, 135-144, 2007.

14. Zhang, D., K. Lu, R. Mao, R. Y. Feng, Y. Liu, Z. Ming, and L. Ni, "Fine-grained localization for multiple transceiver-free objects by using RF-based technologies," IEEE Trans. Parallel Distrib. Syst., Vol. 25, No. 6, 1464-1475, 2014.
doi:10.1109/TPDS.2013.243

15. Talampas, M. C. R. and K. S. Low, "A geometric filter algorithm for robust device-free localization in wireless networks," IEEE Trans. Ind. Informat., Vol. 12, No. 5, 1670-1678, 2016.
doi:10.1109/TII.2015.2433211

16. Wilson, J. and N. Patwari, "Radio tomographic imaging with wireless networks," IEEE Trans. Mob. Comput., Vol. 9, No. 5, 621-632, 2010.
doi:10.1109/TMC.2009.174

17. Kaltiokallio, O., M. Bocca, and N. Patwari, "Enhancing the accuracy of radio tomographic imaging using channel diversity," Proc. 9th IEEE Int. Conf. MASS, 254-262, 2012.

18. Bocca, M., A. Luong, N. Patwari, and T. Schmid, "Dial it in: Rotating RF sensors to enhance radio tomography,", arXiv, 2013, [Online], Available: http://arxiv.org/abs/1312.5480.

19. Wang, J., Q. Gao, H.Wang, P. Cheng, and K. Xin, "Device-free localization with multi-dimensional wireless link information," IEEE Trans. Veh. Technol., Vol. 64, No. 1, 356-366, 2015.
doi:10.1109/TVT.2014.2318084

20. Yang, Z. Y., K. D. Huang, X. M. Guo, and G. L.Wang, "A real-time device-free localization system using correlated RSS measurements," EURASIP J. Wireless Commu. Netw., Vol. 2013, No. 186, 1-12, 2013.

21. Wang, J., Q. Gao, X. Zhang, and H. Wang, "Device-free localization with wireless networks based on compressing sensing," IET Commun., Vol. 6, No. 15, 2395-2403, 2012.
doi:10.1049/iet-com.2011.0603

22. Kanso, M. A. and M. G. Rabbat, "Compressed RF tomography for wireless sensor networks: centralized and decentralized approaches," Proc. 5th DCOSS, 173-186, 2009.

23. Ke, W., G. Liu, and T. Fu, "Robust sparsity-based device-free passive localization in wireless networks," Progress In Electromagnetics Research C, Vol. 46, 63-73, 2014.
doi:10.2528/PIERC13101301

24. Hamilton, B. R., X. L. Ma, R. J. Baxley, and S. M. Matechik, "Propagation modeling for radio frequency tomography in wireless networks," IEEE J. Sel. Topics Signal Process., Vol. 8, No. 1, 43-54, 2014.
doi:10.1109/JSTSP.2013.2287471

25. Guo, Y., K. Huang, N. Jiang, X. Guo, and G. Wang, "An exponential-Rayleigh model for RSS-based device-free localization and tracking," IEEE Trans. Mob. Comput., Vol. 14, No. 3, 484-494, 2015.
doi:10.1109/TMC.2014.2329007

26. Wang, Z. H., H. Liu, S. X. Xu, X. Y. Bu, and J. P. An, "A diffraction measurement model and particle filter tracking method for RSS-based DFL," IEEE J. Sel. Areas Commun., Vol. 33, No. 11, 2391-2403, 2015.
doi:10.1109/JSAC.2015.2430517

27. Wang, J., Q. H. Gao, M. Pan, X. Zhang, Y. Yu, and H. Y. Wang, "Toward accurate device-free wireless localization with a saddle surface model," IEEE Trans. Veh. Technol., Vol. 65, No. 8, 6665-6677, 2016.
doi:10.1109/TVT.2015.2476495