Vol. 59
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-17
Dynamic Modelling of Induction Motor Squirrel Cage for Different Shapes of Rotor Deep Bars with Estimation of the Skin Effect
By
Progress In Electromagnetics Research M, Vol. 59, 147-160, 2017
Abstract
This paper presents a dynamic modelling of a series of induction motors (IM) squirrel cage with different shapes of rotor deep bars taking into account the skin effect. The approach is divided into two parts. The first part consists in modelling the skin effect in a rectangular rotor deep-bar with three methods (conventional analytical method, nite element method and analysis method of circuit). These are compared (estimate of the relative error), and subsequently, generalized to more complex forms (trapezoidal, inverted, direct trapezoidal and double cage), done by using the two last methods which take into account the geometrical non-linearity of the slots. The second part consists in a dynamic modelling with variable parameters that take into account the skin effect, simulated for a series of motors with the same power (with different geometric shapes of rotor bars), to see their influence on the starting characteristics of these IM, and the results are compared and discussed.
Citation
Zakari Maddi Djamel Aouzellag , "Dynamic Modelling of Induction Motor Squirrel Cage for Different Shapes of Rotor Deep Bars with Estimation of the Skin Effect," Progress In Electromagnetics Research M, Vol. 59, 147-160, 2017.
doi:10.2528/PIERM17060508
http://www.jpier.org/PIERM/pier.php?paper=17060508
References

1. Kostenko, M. and L. Piotrovski, Machines électriques, Tome II , Editions mire, Moscou, Russia, 1979.

2. Smith, A. C., R. C. Healey, and S. Williamson, "A transient induction motor model including saturation and deep bar effect," IEEE Transactions on Energy Conversion, Vol. 11, No. 1, 8-15, 1996.
doi:10.1109/60.486570

3. Choudhury, Md. S. H., M. A. Uddin, Md. N. Hasan, and M. Shafiul, "Impact of skin effect for the design of a squirrel cage induction motor on its starting performances," International Journal of Engineering Science and Technology, Vol. 4, No. 1, Engg Journals Publications, 2012.

4. Boglietti, A., A. Cavagnino, and M. Lazzari, "Computational algorithms for induction motor equivalent circuit parameter determination - Part II: Skin effect and magnetizing characteristics," IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, 3734-3740, 2011.
doi:10.1109/TIE.2010.2084975

5. Saied, B. M. and A. J. Ali, "Determination of deep bar cage rotor induction machine parameters based on finite element approach," 2012 First National Conference for Engineering Sciences (FNCES), 1-6, IEEE, 2012.

6. Jelassi, S., R. Romary, and J. F. Brudny, "Slot design for dynamic iron loss reduction in induction machines," Progress In Electromagnetics Research B, Vol. 52, 79-97, 2013.
doi:10.2528/PIERB13041507

7. Liwschitz-Garik, M., "Skin-effect bars of squirrel-cage rotors," Electrical Engineering, Vol. 70, No. 6, 504, 1954.
doi:10.1109/EE.1954.6438810

8. Babb, A. S. and J. Williams, "Circuit analysis method to determination of A-C of machines conductor," AIEE Trans., Vol. 70, No. 10, 661-666, 1951.

9. Pyrhnen, J., T. Jokinen, and V. Hrabovcov, Design of Rotating Electrical Machines, Wiley, 2008.
doi:10.1002/9780470740095

10. Boldea, I. and S. A. Nasar, The Induction Machine Handbook, Finite Element Method Magnetics, User’s Manual, CRC Press, 2010.

11. Pusca, R., R. Romary, V. Fireteanu, and A. Ceban, "Finite element analysis and experimental study of the near-magnetic field for detection of rotor faults in induction motors," Progress In Electromagnetics Research B, Vol. 50, 37-59, 2013.
doi:10.2528/PIERB13021203

12. Meeker, D. C., Finite Element Method Magnetics, User’s Manual, 2015.

13. Maddi, Z. D. Aouzellag, and T. Laddi, "Influence of the skin effect and the form of slot on the starting characteristics of induction motor squirrel cage," International Conference in Recent Advances in Mechanics, Mechatronics and Civil, Chemical and Industrial Engineering, 125-129, 2015.

14. Benecke, M., R. Doebbelin, G. Griepentrog, and A. Lindemann, "Skin effect in squirrel cage rotor bars and its consideration in simulation of non-steady-state operation of induction machines," PIERS Online, Vol. 7, No. 5, 421-425, 2011.

15. Kopilov, I. P., Calculation of the Electric Machines, Moscow, Russia, 2002.